
v1.0 - 2017-11-24

Some investigation into loading siri-vm data into a Postgres database.

There are several strategies for bulk uploading data:

Using the Postgres 'copy' protocol via pgloader . pgloader will where possible optimise
uploads by doing them in parallel and will optionally drop indexes before starting and rebuild them in
parallel once finished

Writing a sequence of SQL INSERT commands from a script and executing them via psql

Issuing SQL INSERT commands from a script via a Postgres interface such as Python's psycopg2

There are also two different strategies for populating columns with copies of data that also appears in the
underlying JSON representation of the SIRI-VM data:

Upload just the JSON data and subsequently populate the additional columns with
UPDATE <database> SET commands

Extract values for the additional columns in the loader script and upload these and the JSON record

This schema just contains the individual SIRI-VM records as JSON, but includes functional indexes built on
potentially interesting fields within the JSON:

Database considerations

Bulk loading data

Simple schema

http://pgloader.io/

CREATE TABLE siri_vm_simple_test (
 id SERIAL PRIMARY KEY,
 info JSONB
);

CREATE INDEX siri_vm_simple_test_info ON siri_vm_simple_test USING GIN (info);
CREATE INDEX siri_vm_simple_test_acp_id ON siri_vm_simple_test ((info->>'acp_id'))
;
CREATE INDEX siri_vm_simple_test_acp_lat ON siri_vm_simple_test ((info->>'acp_lng'
));
CREATE INDEX siri_vm_simple_test_acp_lng ON siri_vm_simple_test ((info->>'acp_lat'
));
CREATE INDEX siri_vm_simple_test_acp_ts ON siri_vm_simple_test (to_timestamp((info
->>'acp_ts')::double precision));

An obvious drawback to this is that we only end up with position expressed as separate latitude and
longitude, and as text strings at that.

This schema still contains the individual SIRI-VM records as JSON, but promotes all the interesting
information into separate columns and indexes them:

CREATE TABLE siri_vm_complex_test (
 id SERIAL PRIMARY KEY,
 acp_id TEXT,
 location4d GEOGRAPHY(POINTZM,4326),
 acp_ts TIMESTAMP WITH TIME ZONE,
 info JSONB
);

CREATE INDEX siri_vm_complex_test_acp_id ON siri_vm_complex_test (acp_id);
CREATE INDEX siri_vm_complex_test_location4d ON siri_vm_complex_test USING GIST (l
ocation4d);
CREATE INDEX siri_vm_complex_test_acp_ts ON siri_vm_complex_test (acp_ts);
CREATE INDEX siri_vm_complex_test_info ON siri_vm_complex_test USING GIN (info);

All experiments were run on a MacBook Pro with a dual-core 2.9 GHz Intel Core i5 with 16GB of memory
running Postgres 10.1/PostGIS2.4.0 locally. All scripting used Python 3.6.2, with psycopg2 2.7.3.1 where
needed.

All tests started by TRUNCATING the relevant table. Indexes were dropped before loading started and

'Complex' schema

Loading results

recreated once finished (by pgloader where possible). Tests were run 5 times.

psql -c "truncate siri_vm_simple_test" acp
./siri-vm-to-simple-csv.py ../data/sirivm_json/data_bin/2017/10/27/ | pgloader sir
i-vm-to-simple-database.load

Mean: 171 sec (2m51s); Max: 176 sec; Min: 169 sec

psql -c "truncate siri_vm_simple_test" acp
psql -f drop_simple_indexes.sql acp
./siri-vm-simple-insert.py ../data/sirivm_json/data_bin/2017/10/27/
psql -f add_simple_indexes.sql acp

Mean: 211 sec (3m31s); Max: 230 sec; Min: 196 sec

This UPDATE statement:

UPDATE siri_vm_complex_test set
 acp_id = info->>'acp_id',
 location4d = ST_GeogFromText('SRID=4326;POINT(' || (info->>'acp_lng') || ' ' |
| (info->>'acp_lat') || ' 0 ' || (info->>'acp_ts') || ')'),
 acp_ts = to_timestamp((info->>'acp_ts')::double precision);

psql -c "truncate siri_vm_complex_test" acp
psql -f drop_complex_indexes.sql acp
./siri-vm-to-simple-csv.py ../data/sirivm_json/data_bin/2017/10/27/ | pgloader sir
i-vm-to-complex-database-with-update.load
psql -f add_complex_indexes.sql acp

Mean: 199 sec (3m19s); Max: 237 sec; Min: 189 sec;

Simple Schema

Extract just sirivm_json data to CSV, load this

Extract and upload just sirivm_json files in a script

'Complex' schema

Extract just sirivm_json data to CSV, load this and run an UPDATE

Extract sirivm_json data in a script and derive additional values, emit as CSV and load
this

psql -c "truncate siri_vm_complex_test" acp
./siri-vm-to-complex-csv.py ../data/sirivm_json/data_bin/2017/10/27/ | pgloader si
ri-vm-to-complex-database.load

Mean: 171 sec (2m51s); Max: 173 sec; Min: 170 sec

psql -c "truncate siri_vm_complex_test" acp
psql -f drop_complex_indexes.sql acp
./siri-vm-to-complex-sql.py ../data/sirivm_json/data_bin/2017/10/27/ | psql -q acp
psql -f add_complex_indexes.sql acp

Mean: 219 sec (3m39s); Max: 221 sec; Min: 215 sec

psql -c "truncate siri_vm_complex_test" acp
psql -f drop_complex_indexes.sql acp
./siri-vm-complex-insert.py siri_vm3 ../data/sirivm_json/data_bin/2017/10/27/
psql -f add_complex_indexes.sql acp

Mean: 205 sec (3m25s); Max: 208 sec; Min: 204

Loading CSV data with pgloader was the fastest strategy, followed by loading simple CSV and
subsequently running UPDATE TABLE to populate additional columns. These were followed by doing the
upload from a script, with creating and executing SLQ INSERT statements last. The slowest method took
about 30% longer than the fastest.

The schema chosen makes very little difference to the load time.

Appending results, particularly in real time, is a different situation from bulk loading them, not least because
the option of droping indexes and re-adding them isn't available.

Here are a couple of tests, one for each of the simple and complex schema, that involve loading one day's
worth of data by the fastest method above and then loading a further day's data. In each case the
subsequent load was done with indexes defined and with a commit after loading the records from each
SIRI+VM JSON file.

Extract sirivm_json data in a script and derive additional values, emit as SQL INSERTS
and pipe to psql :

Extract and upload sirivm_json and additional values in a script:

Conclusions

Appending results

psql -c "truncate siri_vm_simple_test" acp
./siri-vm-to-simple-csv.py ../data/sirivm_json/data_bin/2017/10/27/ | pgloader sir
i-vm-to-simple-database.load
./siri-vm-simple-insert-commit.py ../data/sirivm_json/data_bin/2017/10/26/

Mean: 683 sec (11m23s); Max: 693 sec; Min: 680 sec

Uploading the first day will have taken about 171 sec (see above), so the additional day took about 512 sec
(8m32s).

psql -c "truncate siri_vm_complex_test" acp
./siri-vm-to-complex-csv.py ../data/sirivm_json/data_bin/2017/10/27/ | pgloader si
ri-vm-to-complex-database.load
./siri-vm-complex-insert-commit.py ../data/sirivm_json/data_bin/2017/10/26/

Mean: 668 sec (11m8s); Max: 692 sec; Min: 650 sec

Uploading the first day will have taken about 171 sec (see above), so the additional day took about 497 sec
(8m17s).

Loading into the complex schema seems to be slightly faster than the simple one. This could be becasue
maintaining the functional indexes based on data in the JSON is slightly more complex than diirectly
indexing columns.

Simple schema:

Complex schema

Conclusions

