
1/1

Computational Models of Higher Categories
Lecture 3

Jamie Vicary
University of Cambridge

Midland Graduate School in the Foundations of Computing Science
University of Birmingham

2-6 April 2023

2/1

Paths modulo units

Suppose we have these
cells in a 2-category:

x : ? y : ?

f : x → x h : x → y

g : x → y j : x → y

m : f ⇒ id(x) p : h ⇒ j

n : g ⇒ h

We might try to compose them as follows:

A := x x y

f g

id(x) h

⇑m ⇑n

j
⇑p

B :=
x x y

f g

id(x) h

⇑m ⇑n

h

j
⇑p

⇑λh

Simple, but invalid Verbose, but correct

But wait—the unit composite seems trivial. We would like the following:
• The proof assistant should accept A as valid. Yes!

• Automatic “deflation” of B to give A, removing trivial structure. Yes!

• Concept of “equality up to units” such that “A = B” is validated. Yes!

• Automatic “inflation” of A to give B, inserting missing coherences. Research.

.

3/1

Semistrictness
The graphical calculus suggests homotopy as a basic mechanism with which to manipulate
terms and execute computations.

The ‘strictest’ definitions of higher category do not allow these manipulations, and are
known to be insufficiently general.

At the opposite end of the spectrum, the ‘weakest’ definitions allow not only these
manipulations, but far more besides.

Weak Strict

Semiweak Semistrict

A model of higher categories is semistrict if it is as strict as possible, while still preserving
equivalence to fully weak higher categories. However, yields long proofs!

For proof construction, better to be semiweak : as weak as possible, except strictly
associative and unital. Yields unique composites.

The system homotopy.io is semiweak. Today we will see how to give Catt the same property.

4/1

Plan for this lecture

• Describe Catt in a more formal way.
(Finster & Mimram, arXiv:1706.02866)

• See how models of Catt are weak ∞-categories.

• Give a reduction relation on Catt terms which “removes unit structure”.
(Finster, Reutter, Rice & Vicary, arXiv:2007.08307)

• Define the theory Cattsu, by using reduction to generate definitional equality.

• Models of Cattsu are strictly unital ∞-categories, and we explore their properties.

• We can also make associators strict using similar methods, giving a theory Cattsua.
(Finster, Rice & Vicary, arXiv:2302.05303)

• Investigate nontrivial examples, including Eckmann-Hilton.

• Learn new syntax allowing us to try this out in the proof assistant.

http://arxiv.org/abs/2302.05303
http://arxiv.org/abs/2007.08307
http://arxiv.org/abs/1706.02866

5/1

Catt as a type theory
Contexts Γ, Δ, . . . are lists
of variables-with-types:

x : A, y : B , . . . , z : C

Types A, B , C , . . . are trivial,
or pairs of parallel terms:

? u → v

Terms t, u, v , . . . are variables
or coherences:

x coh(Γ : A)[σ]

Substitutions σ : Γ → Δ are
functions σ : var(Γ) → tm(Δ)

Γ ` “Γ is the generating data

for a free weak ∞-category Γ̃”

Γ ` A “in Γ̃, there is a hom-set A”

Γ ` t : A “in Γ̃, there is a morphism t
in the hom-set A”

Δ ` σ : Γ “there is a strict ∞-functor

σ : Γ̃ → Δ̃”

No definitional equality except renaming bound variables—“Catt does not compute”.

6/1

Catt term construction – quick reminder
“in a pasting context, parallel full terms can be filled”

We can construct terms as follows, when Γ is a pasting context:

∂−(Γ) ` u : A ∂+(Γ) ` v : A

Γ ` coh(Γ, u, v) : u → v

Side conditions: fullness, dimension, globularity.

x y z

f

h

g

⇑μ

⇑ν j

x y zh j

x y zf j

Γ

∂+(Γ)

∂−(Γ)

Γ ` coh(Γ, u, v) : u →A v

δ+(Γ) ` u : A

δ−(Γ) ` u : A

.

7/1

Catt term construction – quick reminder
“in a pasting context, parallel full terms can be filled”

We can construct terms as follows, when Γ is a pasting context:

∂−(Γ) ` u : A ∂+(Γ) ` v : A

Γ ` coh(Γ, u, v) : u → v

Γ ` u : A Γ ` v : A

Γ ` coh(Γ, u, v) : u → v

Side conditions: fullness, dimension, globularity.

x y z

f

h

g

⇑μ

⇑ν
j

x y z

f

h

g

⇑μ

⇑ν
j

Γ

Γ

Γ ` coh(Γ, u, v) : u →A v

Γ ` v : A

Γ ` u : A

.

8/1

Globular sums
For pasting schemes P , S , a substitution σ : P → S is a function var(P) → word(S),
preserving dimension and source/target relationships.

Definition. Catt has pasting schemes as objects, and substitutions as morphisms.

Theorem. In Catt, every object is a colimit of
locally-maximal disks (“globular sums”).

Definition. An ∞-category is a presheaf
Cattop → Set preserving globular sums.

Known to agree with the definition of
contractible ∞-category.

• •
f

⇑μ

• •
f

• •x
f

⇑ν

•x

• •x

• • •
⇑μ

⇑ν

→ →→ →

→ →→

Recent work of Dmitri Ara, Thibaut Benjamin and John Bourke has shown equivalence to
previous definitions by Grothendieck, Maltsiniotis, Batanin, Leinster, Brunerie.

This is a lightweight approach:
• no globular extension technology (Grothendieck/Maltsiniotis)
• no globular operad technology (Batanin/Leinster)

.

9/1

Understanding the definition of ∞-category
Definition. Catt has pasting schemes as objects, and substitutions as morphisms.

Definition. An ∞-category is a presheaf C : Cattop → Set preserving globular sums.

Let’s see why a presheaf C like this gives an ∞-category:

• C (x) gives the objects.

• C (x(f)y) gives the 1-cells.

• C (x(f)y(g)z) gives the pairs of composable 1-cells. (Need globular sum preservation)

• There is a substitution σ : (x(f)y) → (x(f)y(g)z) that acts as follows:

σ(x) := x σ(f) = f ◦ g σ(y) = z

• C (σ) : C (x(f)y(g)z) → C (x(f)y) is the horizontal composition operation,
mapping pairs of composable 1-cells into their actual composite in the ∞-category.

• Similarly, C (x(f (m)g)y) gives the set of 2-cells.

• There is a substitution τ : (x(f (m)g)y) → (x(f)y(g)z(h)w) that acts as τ(m) = αf ,g ,h.

• C (τ) : C (x(f)y(g)z(h)w) → C (x(f (m)h)y) sends a triple of composable 1-cells to
their actual associator in the ∞-category.

10/1

Strictness via reduction

Our goal is to modify this theory to achieve strict units and strict associators.

We will do this with a reduction relation on terms of the theory, which simplifies the syntax.

Let’s start with units. In the context (x(f)y), we would like the following reduction:

f ◦ id(y) f

We can write that out with its full syntax:

(coh(x(f)y(g)z , x , z))[f , id(y)] f

Let’s draw the tree representation of the
head context, with arguments in place:

This gives us an idea: since g is sent to an
identity, remove the entire g branch.

•

• •

x
y
z

f 7→f g 7→id(y)

•

•

x y

f 7→f

11/1

P Reduction
“prune identity arguments”

Suppose n ∈ var(Γ) is locally maximal, with n[σ] an identity.

Then σ factorizes via Γ/n, with n[πn] = id:

Γ Δ
σ

Γ/n

πn
σ/nn 7→ id

x y z

f

h

g

⇑m

⇑n
j

•

• •

• •

x
y

z

g
f h

j

m n 7→ id

x y z

h

g

⇑m

j

•

• •

•

x
y

z

f g
j

m

f 7→ g
μ 7→ id(g)

The intuition is that the leaf at n has been collapsed, or “pruned”.

We define the reduction as follows:

coh(Γ, u, v)[σ] P coh(Γ/n, u[πn], v [πn])[σ/n]

.

12/1

D Reduction
“simplify unary composites”

We define the n-sphere type Sn and
the n-disk context Dn recursively:

D0 := {d0 : S−1}

Dn+1 := {Dn, d ′
n : Sn−1, dn+1 : Sn}

S−1 := ?

Sn := dn → d ′
n

d0
d0 d ′

0
d1

d0 d ′
0

d1

d ′
1

⇑d2 ∙ ∙ ∙

Then for any n-cell u with n > 0, we can
build its unary composite:

coh(Dn, dn−1, d
′
n−1)[u] D u

This reduces to u itself.

.

L Reduction
“eliminate loops”

Consider a term as follows:

coh(Γ, u, u)[σ] : u[σ] → u[σ]

This “coherence law” says
“u[σ] = u[σ]”.

But this is obvious, and already has a
canonical witness:

id(u[σ]) : u[σ] → u[σ]

So it seems reasonable to eliminate
these terms:

coh(Γ, u, u)[σ] L id(u[σ])

.

13/1

Examples
coh(Γ, u, v)[σ] P coh(Γ/μ, u[πμ], v [πμ])[σ/μ]

coh(Dn, dn−1, d ′
n−1)[u] D u

coh(Γ, u, u) L id(u[σ])

To get normalizing reductions, we extend P, D and L to subterms, and add a single
additional rule: never reduce the head of an identity.

• Identity composite. f ◦ id(y) ≡ coh(x(f)y(g)z , x , z)[f , id(y)]

 P coh(x(f)y , x , y)[f]

 D f X

• Left unitor. coh(x(f)y , id(x) ◦ f , f)

 P coh(x(f)y , (f), f)

 D coh(x(f)y , f , f) ≡ id(f) X

• Associator with
identity.

αf ,id(y),g ≡ coh(x(f)y(g)z(h)w , (f ◦ g) ◦ h, f ◦ (g ◦ h))[f , id(y), g]

 P coh(x(f)y(g)z , (f ◦ id(y)) ◦ g , f ◦ (id(y) ◦ g))[f , g]

 P P coh(x(f)y(g)z , (f) ◦ g , f ◦ (g))[f , g]

 D D coh(x(f)y(g)z , f ◦ g , f ◦ g)[f , g]

 L id(coh(x(f)y(g)z , x , z)[f , g]) ≡ id(f ◦ g) X

.

14/1

Coherence towers

In weak higher categories, low-dimensional coherences generate higher-dimensional
coherences, a process that continues in all dimensions to produce coherence towers :

f ◦ idfid ◦ f

λf id(f) ρf

...

Cattsu

= =

= =

(f ◦ g) ◦ hf ◦ (g ◦ h)

αf ,g ,h id(f ◦ g ◦ h)

πf ,g ,h,j id(id(f ◦ g ◦ h ◦ j))

...

Cattsua

=

=

=

The strictly unital/associative theories will collapse the entire towers, not just the base.

15/1

Equality

Theorem. Reduction is terminating and has unique normal forms.

Definition. The theory Cattsu is obtained by extending Catt with definitional equality “=”,
defining p = q just when p, q have the same normal form under the reductions P, D, L:

p

qp′

q′p′′

q′′

r

r ′

r ′′

16/1

The definition of semistrict ∞-category

There is an obvious functor πsu : Catt → Cattsu sending terms to their equivalence class.

This functor is full and essentially surjective, but not faithful.

Definition. A strictly unital ∞-category is an ∞-category Cattop → Set, which factors
through πsu:

Cattop

(Cattsu)op

Set

πsu

C

C ′

Such a factorization must be unique if it exists.

For an ∞-category, being strictly unital is therefore a property.

17/1

Insertion

Pruning, disk removal and loop removal give us strict units.

To get strict associators, we need an extra process called insertion.

T :=

α β

γ , arg(α) :=

φ ψ

 I T ′ :=

βφ ψ

γ

This allows us to “insert” argument contexts into head contexts, giving strict associators.

We define the theory Cattsua by defining equality using I, D, L reductions.

18/1

Strict units and associators

Definition. A strictly unital and associative ∞-category is an ∞-category Cattop → Set,
which factors through πsua:

Cattop

(Cattsua)op

Set

πsua

C

C ′

The following historical conjecture can now be precisely stated.

Conjecture. Every ∞-category is equivalent to a strictly unital and associative ∞-category.

19/1

General contexts

So far we have focused on contexts given by pasting schemes.

There is a more general notion of context, given by a list of variables, whose source and
targets are words over the earlier variables. (Side conditions: globularity, dimension.)

Here are some examples:

• x : ?, y : ?, z : ?, f : x → y , g : x → z

• x : ?, y : ?, z : ?, f : x → y , g : y → z , h : x → z , m : f ◦ g → h.

• x : ?, f : x → y , y : ? Not a context

• x : ?, a : id(x) → id(x), b : id(x) → id(x) 1-degenerate

• x : ?, a : id(id(x)) → id(id(x)), b : id(id(x)) → id(id(x)) 2-degenerate

Contexts give us a universal perspective on ∞-categories.

Theorem. Every ∞-category C is equivalent to a free ∞-category on some context C̃ .

C̃ is the cofibrant replacement of C . Weak ∞-functors C → D are strict ∞-functors C̃ → D.

20/1

Eckmann-Hilton

Let’s consider again the 1-degenerate context:

x : ?, a : id(x) → id(x), b : id(x) → id(x)

Then it’s easy to see from the graphical calculus that a 3-cell equivalence must exist:

EHa,b : a • b → b • a

We can illustrate this as follows:

21/1

Eckmann-HiltonΓ := {x : ?, a : id(x) → id(x),
b : id(x) → id(x)}

In context Γ, the Eckmann-Hilton 3-cell has the following type:

EHa,b : a • b → b • a

In Cattsu we can construct it as an interchanger u:

⇑a

⇑b
x x

D
x x

id

id

⇑a

x x

id

id

⇑b

x x
P

x x x

id

id

⇑id

id

id

⇑a

x x x

id

id

⇑b
id

id

⇑id

x x u
→

x x x

id

id

⇑b
id

id

⇑id

x x x

id

id

⇑id

id

id

⇑a

x x P
x x

id

id

⇑b

x x

id

id

⇑a

x x D ⇑b

⇑a
x x

We can also formalize it in Catt. We can visualize the syntax trees of the two proofs:

Catt (1224 vertices) Cattsu (60 vertices)

=

.

22/1

SyllepsisΔ := {x : ?, a : id(id(x)) → id(id(x)),
b : id(id(x)) → id(id(x))}

In Δ, the Syllepsis 5-cell has the following type:

SYs,t : EHa,b •3 EH−1
b,a → id(a • b)

Geometrically, it says “the double braid is isotopic to the identity”.

We can construct it in Cattsua. Its syntax tree has 2,713 vertices:

Cannot yet construct SYs,t in Catt. Estimated Catt proof size ∼ 100,000 vertices.

.

23/1

Research frontier

Path types are not contractible . . .

x y

f

y ′ z
g

. . . but they can be carved into contractible pieces.

Can we gain this advantage for Martin-Löf identity types?

Could this go some way to alleviate the burden of proof-relevance?

Could this approach to semistrictness apply beyond path types?

24/1

Catt additional syntax

We saw this syntax already:

• Coherence construction: coh name (pasting) : source => target

• Coherence application: ... (name arg1 arg2 ...) ...

• Comments: # what a wonderful day

Here are some new techniques:

• Strict unit mode: ./catt.exe --su myfile.txt

• Strict unit and associator mode: ./catt.exe --sua myfile.txt

• Equality checking in pasting context: assert (pasting) | u = v

• Definition of arbitrary context: {x :: *} {y :: *} (a :: src => tgt)
(b :: src => tgt) ...

• Type assertion in any context: let name (context) :
[source => target] = word

25/1

Class 3 – Activities

Activity 3.1. This activity investigates the associator αf ,g ,h. (Use assert)

(a) In Cattsu, show the associator equals the identity whenever one argument is an identity.

(b) In Cattsua, show that the associator always equals the identity.

Activity 3.2. This activity builds on Activity 1.3. (Use assert)

(a) In Cattsua, show that the triangle, pentagon, unit and associahedron coherences are
equal to the identity.

(b) In Cattsua, show that the interchanger coherence is not equal to an identity.

Activity 3.3. In Cattsua, formalize the Eckmann-Hilton isotopy from slide ??, and show
that it has the type s • t → t • s. (Use let)

Activity 3.4. In Cattsua, formalize the Third Reidemeister Move from Activity 2.2(d).
(Use let)

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	anm0:

