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Interchange law

In Class 1, we will build the interchange law as a 3-cell. In a 2-category, it is an equation.

Lemma. In a 2-category, all suitably composable 2-morphisms m, n, p, q satisfy the
interchange law:

(m ◦ n) • (p ◦ q) = (m • p) ◦ (n • q)

Proof. This holds due to properties of the category C(A, B) × C(B , C ), and from the fact
that −◦− : C(A, B) × C(B , C ) → C(A, C ) is a functor:

(m • n) ◦ (p • q) ≡ ◦(m • n, p • q)

= ◦
(
(m, p) • (n, q)

)
(composition in C × C)

=
(
◦(m, p)

)
•
(
◦(n, q)

)
(functoriality of ◦)

= (m ◦ p) • (n ◦ q)

Remember functoriality: F (g ◦ f ) = F (g) ◦ F (f ). This is a good consistency check.

The form of this equation shows the difficulty we may have working with higher categories.
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Graphical calculus for 2-categories

In the disk/pasting representation, objects are represented by points, 1-cells by horizontal
lines, and 2-cells by regions:
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m  m

f

g

A B

The graphical calculus is an alternative notation that dualizes this representation.

In this calculus, objects are represented by regions, 1-morphisms by vertical lines, and
2-morphisms by vertices.
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Graphical calculus for 2-categories
Horizontal and vertical composition is represented like this:
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B Cn = m ◦ n

A B
g

f

h

m

n

 
m

f

g

h

A B

n

= m • n

The units, associator, and left and right unitors are not depicted.
Coherence is essential for this to make sense.
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The interchange law, revisited
Let’s look again at the interchange law:

(m ◦ n) • (p ◦ q) = (m • p) ◦ (n • q)
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In the graphical calculus, we have a grid of cells in the plane.

The brackets aren’t part of the notation. Dropping them, the equation becomes trivial!

The apparent complexity of the theory of monoidal categories — α, λ, ρ, coherence,
interchange — was in fact complexity of the geometry of the plane. When we use a
geometrical notation, the complexity vanishes.
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Planar isotopy
Two diagrams are planar isotopic when one can be deformed into the other, such that:

• diagrams remain confined to a rectangular region of the plane;

• input and output wires terminate at the lower and upper boundaries of the rectangle;

• components of the diagram never intersect.

Here are examples of isotopic and non-isotopic diagrams:

f

gh
iso
=

f

g

h

not
iso

6=
f

g

h

We will allow heights of the diagrams to change, and allow input and output wires to slide
horizontally along the boundary, although they must never change order.
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Correctness of the graphical calculus

We can now state the correctness theorem.

Theorem. A well-formed equation between morphisms in a 2-category follows from the
axioms if and only if it holds in the graphical language up to planar isotopy.

Let f and g be composite 2-morphisms such that the equation f = g is well-formed, and
consider the following statements:

• P(f , g) = ‘under the axioms of a 2-category, f = g ’

• Q(f , g) = ‘graphically, f and g are planar isotopic’

Soundness is the assertion that for all such f and g , P(f , g) ⇒ Q(f , g). It is easy to
prove: just check each axiom.

Completeness is the reverse assertion, that for all such f and g , Q(f , g) ⇒ P(f , g). It is
hard to prove; one must show that planar isotopy is generated by a finite set of moves,
each being implied by the 2-category axioms.
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Equivalence
Definition. In a 2-category, an equivalence is a pair of 1-morphisms f : x → y and
g : y → x , and invertible 2-morphisms α : f ◦ g ⇒ id(x) and β : g ◦ f ⇒ id(y):

α β

Invertibility has the following graphical form:

α-1

α
=

α

α-1
=

β

β-1
=

β-1

β
=

Lemma. An equivalence in Cat is exactly an ordinary equivalence of categories.
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Duality

Definition. In a 2-category, a 1-morphism f : x → y has a right dual g : y → x when
there are 2-morphisms α : f ◦ g ⇒ id(x) and β : g ◦ f ⇒ id(B)

α = β =

satisfying the snake equations:

= =

Lemma. In Cat, a duality f a g is exactly an adjunction of functors.
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Promoting an equivalence

We now prove an interesting theorem relating equivalences and duals.

Theorem. In a 2-category, every equivalence gives rise to a dual equivalence.

Proof. Suppose we have an equivalence in a 2-category, witnessed by invertible
2-morphisms α and β. Then we can build a new equivalence witnessed by α and β′, with
β′ defined like this:

β′ :=
β

α-1

β-1

Since β′ is composed from invertible 2-morphisms it must itself be invertible.

Also, notice that β and β′ the same type.

So α and β′ together still give the data of an equivalence.
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Promoting an equivalence

We now demonstrate that the snake equations are satisfied by α, β′.

We prove the first snake equation as follows:

α

β′
=

β

α-1

β-1

α

=
α

β

β-1

α-1
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Promoting an equivalence
The second snake equation is demonstrated as follows:
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=
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Defining 3-categories
The algebraic definition of 3-category (or tricategory) is difficult.

However, the graphical calculus allows us to understand 3-categories quite easily.

The graphical calculus for 2-categories is 2-dimensional:

• objects correspond to planes;

• 1-morphisms correspond to wires;

• 2-morphisms correspond to vertices.

For 3-categories, we extend this as follows:

• objects correspond to volumes

• 1-morphisms correspond to surfaces

• 2-morphisms correspond to wires

• 3-morphisms correspond to vertices

We still need to take care with our notion of isotopy, but the theory of these diagrams is
now quite well understood.
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Defining 3-categories

We can compose structures horizontally, vertically or “depthwise”:

μA
B

C
D

f

gg

h

j

ν

Components can move freely in their separate layers, giving the interchanger 3-morphism:

x x x x

Unit 1-morphisms correspond to “empty surfaces”.
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The proof assistant homotopy.io

Now we’re ready to take a look at the proof assistant. You can follow along on your laptop.

https://beta.homotopy.io

(f, g, h example)
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Degenerate higher categories
An n-category is k-degenerate if it has one object, one 1-cell, ..., and one (k − 1)-cell.

A k-degenerate n-category behaves more like an (n − k)-category, as k dims are trivial.

However, because it is sitting above the degenerate k dimensions, this (n − k)-category
will be endowed with extra structure. Let’s see what happens with 1-categories:

• A 1-degenerate 1-category is a monoid.

• A 2-degenerate 2-category is a commutative monoid.

After this it stabilises: an n-degenerate n-category is a commutative monoid for n ≥ 2.

Now let’s try the same thing with 2-categories:

• A 1-degenerate 2-category is a monoidal category.

• A 2-degenerate 3-category is a braided monoidal category.

• A 3-degenerate 4-category is a symmetric monoidal category.

Here it again stabilises: an n-degenerate (n + 1)-category is symmetric monoidal for n ≥ 3.

The general pattern is now clear. This is called the periodic table of higher categories.
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Definitions and theorems

Working in a free ∞-category, the concepts of definition and theorem merge.

Theorems. Let p, q be k-cells, and suppose we conjecture there exists a (k + 1)-cell p → q.

A proof would be a composite (k + 1)-cell c = p → p′ → ∙ ∙ ∙ → q.

This data can be conveniently encoded as follows:

• A new (k + 1)-dimensional generator thm : p → q. (This is the theorem statement.)

• A new invertible (k + 2)-dimensional generator pf : thm → c . (This is the proof.)

Definitions. Consider a complex composite (k + 1)-cell c : p → q. If we use it frequently,
we may want to define a new generator token as a shorthand. We achieve that as follows:

• A new (k + 1)-dimensional generator token : p → q.

• A new invertible (k + 2)-dimensional generator def : token → c .

These situations are identical!

The generators pf/def let us inline or abstract thm/token locally within a large proof.
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Class 2 – Activities
Use the proof assistant homotopy.io to complete these activities.

Activity 2.1. Build the example planar isotopy from slide 6.

Activity 2.2. Prove
these braided monoidal
category identities:

(a) = (b)
f g

=
g f

. (c) =

(d) =

Activity 2.3. In a 2-category, a monad is a 1-cell f : x → x , along with 2-cells
m : f ◦ f ⇒ f and u : id(x) ⇒ f , satisfying associativity and unitality equations.

(a) Use homotopy.io to encode the definition of a monad. View the data in 3d.
(b) Add 4-cells representing the pentagon and triangle laws. View the data in 3d and 4d.
(c) (Hard.) Add a 5-cell representing the associahedron law for the pentagon.

See page 10 of this article: https://arxiv.org/abs/1301.1053

Activity 2.4. Formalize the equivalence promotion theorem from slide 10.

Activity 2.5. Prove that for an adjunction f a g , we have g ' g ′ if and only if f a g ′.




