
1/19

Computational Models of Higher Categories
Lecture 1

Jamie Vicary
University of Cambridge

Midland Graduate School in the Foundations of Computing Science
University of Birmingham

2-6 April 2023



2/19

Motivation

Higher category theory describes the composition and
equivalence of higher dimensional-processes.

The mathematical theory has a reputation for
complexity, “generally regarded as a technical and
forbidding subject” (Lurie).

A computational lens helps to bring out the simplicity
and accessibility of the subject.

Higher categories are dynamical objects, and best
understood by using and manipulating them.

•

•

•

•

•

••

•



3/19

The definition of 1-category
Definition. A 1-category C is given by:

• a collection Ob(C) of objects

• for any objects A, B , a set of morphisms C(A, B)

• for any object A an identity morphism idA ∈ C(A, A)

• for any objects A, B , C a composition operation −◦− : C(A, B)×C(B , C ) → C(A, C )

• for any composable morphisms f , g , h an equality f ◦ (g ◦ h) = (f ◦ g) ◦ h

• for any morphism f : A → B the equalities f ◦ idB = f = idA ◦ f

Example. Let Ob(C) be the empty set.

Overall that corresponds to the following:

• 2 sets (ignoring size issues)

• 2 functions

• 3 equations

Onwards and upwards!



4/19

The definition of 2-category

Definition. A 2-category C consists of the following data:

• a collection Ob(C) of objects

• for any two objects A, B , a category C(A, B), with objects
called 1-morphisms drawn as f : A → B , and morphisms called
2-morphisms drawn as m : f ⇒ g , or in full form as follows:

A B

g

f

m

• for 2-morphisms m : f ⇒ g and n : g ⇒ h, an operation
called vertical composition given by their composite as
morphisms in C(A, B), written m • n:

A B
g

f

h

m

n



5/19

The definition of 2-category

• for any triple of objects A, B , C a horizontal composition functor:

−◦− : C(A, B) × C(B , C ) → C(A, C )

A C

g ◦ j

f ◦ h

m ◦ n = A B C

g

f

m

j

h

n

• for any object A, a 1-morphism idA : A → A called the identity 1-morphism

• natural families of invertible 2-morphisms ρf : f ◦ id ⇒ f and λf : id ◦ f ⇒ f
called the right and left unitors

• a natural family of invertible 2-morphisms αf ,g ,h : (f ◦ g) ◦ h ⇒ f ◦ (g ◦ h)
called the associators



6/19

The definition of 2-category
• for composable 1-morphisms f , g , the triangle equation must be satisfied:

(f ◦ id) ◦ g f ◦ (id ◦ g)

f ◦ g
ρf ◦ idg idf ◦ λg

αf ,id,g

• for composable 1-morphisms f , g , h, j , the pentagon equation must be satisfied:

(
(f ◦ g) ◦ h

)
◦ j

(
f ◦ (g ◦ h)

)
◦ j f ◦

(
(g ◦ h) ◦ j

)

f ◦
(
g ◦ (h ◦ j)

)

(f ◦ g) ◦ (h ◦ j)

αf ,g ,h ◦ idj

αf ,g◦h,j

idf ◦ αg ,h,j

αf ◦g ,h,j αf ,g ,h◦j

An important consequence is coherence — all well-formed equations commute.

This structure is sometimes called a bicategory, or weak 2-category.



7/19

The 2-category of categories

Example. The 2-category Cat is defined as follows:

• objects are categories

• 1-morphisms are functors

• 2-morphisms are natural transformations

• vertical composition is componentwise composition of natural transformations, with
(μ ∙ ν)A := μA ◦ νA

• horizontal composition is composition of functors



8/19

Definitional complexity

Let’s think about the complexity of these definitions:

• 1-category: 2 sets, 2 functions, 3 axioms

• 2-category: 3 sets, 6 functions, 6 axioms

• 3-category: 4 sets, 19 functions, 58 axioms

• 4-category: 5 sets, 34 functions, 118 axioms (ish) •

•

•

•

•

••

•

As the dimension increases, just writing down these definitions becomes difficult.

Furthermore, using the definitions becomes almost impossible.

Homotopy theory increases in complexity in each dimension. We need a new approach.



9/19

Foundations of higher categories

Alexander Grothendieck was one of the greatest modern mathematicians.

He was obsessed with finding an axiomatic system for ‘well-behaved’
topological spaces, avoiding paradoxes like Banach-Tarski.

One thing which strikes me ... is the absence of proper
foundations for topology itself!

He wrote a famous letter in 1983 to the mathematician Daniel
Quillen, where he sketched some ideas, but concluded:

One seems caught in an infinite chain of ever messier structures
... one is going to get hopelessly lost, unless one discovers
some simple guiding principle.

The next day he solved the problem, and wrote in another letter:

I went on pondering ... motivation does furnish a simple guiding
principle in order not to get lost in the messiness of higher structures.

.



10/19

Paths as types

Grothendieck’s idea begins with n-dimensional disks:

D0 := x : ?

x

f

x x ′

D1 := x : ?, x ′ : ?,
f : x → y

f ′

f

αx x ′

D2 := x : ?, x ′ : ?,
f : x → x ′, f ′ : x → x ′,
α : f → x ′

f ′

f

α α′Ω
x x ′

D3 := x : ?, x ′ : ?,
f : x → x ′, f ′ : x → x ′,
α : f → f ′, α′ : f → f ′,
Ω : α → α′

∙ ∙ ∙

The type ? means point. An arrow type S → T means path.

We represent these disks by giving lists of the points and paths in their neighbourhood.

For each disk we give its full context: the types of all elements involved.



11/19

Pasting schemes
Grothendieck suggested “gluing” these disks together, forming geometric pasting schemes.

These are beautiful combinatorial objects, and we will look at 4 different representations.

x y

f

g

⇑m

h

⇑n
z

j

x
y

z

f
g

h

m n

j
x(f (m)g(n)h)y(j)z

x : ?, y : ?, z : ?,

f : x → y , g : x → y ,

h : x → y , j : y → z ,

m : f → g , n : g → h

Disk Tree List Context

The disk perspective gives the fundamental geometrical intuition.

The tree perspective shows every variable at a height given by its dimension.

The list perspective is most economical. It arises from the tree by “tracing round”.

The context perspective is most explicit, and also more general.

The leaf variables are the topmost elements. Here they are m, n, j .

.



12/19

Words
What are the k-cells in the free ∞-category on a pasting scheme? We call these the words.

For example, consider P = x y z wf g h
.

We expect the free ∞-category on P to contain the following words:

• Objects. Just four: x , y , z , w .

• 1-cells. Infinitely many: f , g , h, f ◦ g , f ◦ (g ◦ h), idx , idy , idz , f ◦ idx , . . .

• 2-cells. Infinitely many: ididx , idf ◦g , αf ,g ,h, λf , . . .

• 3-cells. Infinitely many: . . .

• . . .

Looking at this suggests four basic types of word:

• Variables. These are all cells in their own right: x , y , z , w , f , g , h.

• Composites. The cell f ◦ g is built by “composing” f and g .

• Equivalences. These are “laws”, like idx , αf ,g ,h, λf .

• Substituted. These are “compound” objects, such as f ◦ idx , idf ◦g , f ◦ (g ◦ h).



13/19

Boundaries of pasting schemes

Given a pasting scheme P , we can build its source and target boundaries ∂−(P), ∂+(P).

Let’s demonstrate this with the previous example:

P x y

f

g

⇑m

h

⇑n
z

j

x
y

z

f
g

h

m n

j
x(f (m)g(n)h)y(j)z

x : ?, y : ?, z : ?,

f : x → y , g : x → y ,

h : x → y , j : y → z ,

m : f → g , n : g → h

∂+(P) x y zh j

x
y

z

h j

x(h)y(j)z
x : ?, y : ?, z : ?,

h : x → y , j : y → z ,

∂−(P) x y zf j

x
y

z

f j

x(f )y(j)z
x : ?, y : ?, z : ?,

f : x → y , j : y → z ,

The trees handle this nicely: chop off the tree top, keeping the left- or right-most variable.



14/19

Composites and coherences
Here is the essence of Grothendieck’s big idea:

Composites Given a ∂−(P)-word u and a ∂+(P)-word v , get a P-word coh P : u ⇒ v

Equivalences Given P-words u, v , get a P-word coh P : u ⇒ v

When we invoke these rules, we must also check these side-conditions:

• Dimension. The words u, v must have the same dimension.

• Boundary. The words u, v must have the same source and target (“globularity”).

• Fullness. The words u, v must use all the variables of their pasting schemes.

We define dim(coh P : u ⇒ v) = dim(u) + 1, and on variables dim does the obvious thing.

In fact Grothendieck’s original scheme didn’t use the fullness condition.
He was interested in ∞-groupoids, whereas we are focusing here on ∞-categories.

This scheme generates all the cells of traditional globular n-categories ... and more!



15/19

Composites and coherences
Let’s think about why this works. Here’s an example:

x y z

f

h

g

⇑m

⇑n j

x y zh j

x y zf j

P

∂+(P)

∂−(P)

coh P : f ◦ j ⇒ h ◦ (j ◦ id(z))

h ◦ (j ◦ id(z))

f ◦ j

Let’s check the side-conditions: Dimension Boundary Fullness

To compose the elements of P , it’s enough to know how to compose the boundary of P .

This works because every pasting scheme is contractible—homotopy equivalent to a point.

If you stop to think about it, it’s a surprising and profound idea.



16/19

The proof assistant Catt

The proof assistant Catt verifies formal statements in this theory, with the following syntax.

• Coherence construction.

Syntax. coh name (pasting) : source => target

Example. coh comp (x(f)y(g)z) : x => z

• Coherence application. Only the leaf arguments are needed.

Syntax. ... (name arg1 arg2 ...) ...

Example. ... (comp p q) ...

• Comment.

Syntax. # what a wonderful day

.



17/19

Equality, truncation, invertibility

We can use this theory to build the words of a finitely-generated ∞-category.

The only equality relation that we impose is α-equivalence, i.e. renaming bound variables.

Here is a simple example:

coh comp (x(f)y(g)z) : x => z

coh newcomp (u(p)v(q)w) : u => w

The words comp and newcomp will be considered identical in the theory.

Sometimes we want to work in an n-category, rather than an ∞-category.

To achieve this we can use truncation: for n-cells p, q, we consider p = q just when there
exists some invertible (n + 1)-cell p → q.

A cell is invertible when it is an equivalence, or a composite of invertible cells.



18/19

Examples
Let’s look at some examples to get a feel for this new definition.

f gx y z coh comp (x(f)y(g)z) : x => z “f ◦ g”

x coh id0 (x) : x => x “id(x)”

fx y
coh lunit (x(f)y) : comp (id0 x) f => f “λf ”

f g hx y z w coh comp3 (x(f)y(g)z(h)w) : x => w “f ◦ g ◦ h”(!)

f g hx y z w coh assoc (x(f)y(g)z(h)w) : “αf ,g ,h”
comp (comp f g) h => comp f (comp g h)

fx y
coh finv (x(f)y) : y => x “f −1”

f gx y z coh justf (x(f)y(g)z) : f => f “f ”



19/19

Class 1 – Activities
Activity 1.1. For each pasting scheme below, write it in ball, tree, list and context form.

(a) x y

f

g

⇑m z

j

h

⇑n (b)

x
y z

w

g
f

h

m

j
(c) (x(f (m(p)n)g)y)

Activity 1.2. Get the proof assistant Catt working on your machine (see course webpage
for instructions). Enter the examples on slide 18 to check they are correct.

Activity 1.3. Use the proof assistant Catt to build the following coherence cells.

(a) The triangle coherence 3-cell (see slide 6.)
(b) The pentagon coherence 3-cell (see slide 6.)
(c) The unit coherence 3-cell λid(x) → ρid(x). (Here x is an object.)
(d) The interchanger coherence 3-cell (p • q) ◦ (r • s) → (p ◦ r) • (q ◦ s), where ◦ is

horizontal composition, and • is vertical composition. (Here p, q, r , s are 2-cells.)
(e) (Hard!) The associahedron 4-cell, which expresses coherence of the pentagon.

See page 10 of this article: https://arxiv.org/abs/1301.1053




