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Overview

* RISC-V & the RISC-V Formal Specification Task
Group

 GRIFT walkthrough and demo

e Questions



RISC-V

Open source instruction set architecture developed at UC Berkeley
Attempts to avoid cruft and stagnation of proprietary |ISAs

e Base instruction set (“1”) is very small (~40 instructions)

* Other instructions available via extensions (M, A, F, D, C, ...)

Overall design emphasizes configurability across various
parameters (register width, available extensions)

« Example configurations: RV32l, RV64IMAFDC, etc.

Evolution of RISC-V standards and artifacts is stewarded by the
RISC-V Foundation via a number of “task groups”



RISC-V Formal Specification
Task Group

* Goal: Develop a formal specification of the RISC-V
instruction set architecture that is:

* Precise/unambiguous
 Readable (as text)
* Executable

* Usetul for hardware engineers and formal
methods engineers



GRIFT

e “Galois RISC-V Formal Tools” (GRIFT) is our
contribution to the RISC-V Formal Spec Group

* Formalizes instruction encoding and semantics In
embedded domain-specific language (eDSL)
within Haskell, as a library

* |ncludes command-line tools for simulation,
coverage analysis, and documentation/pretty
printing



GRIFT: Design goals

* Express RISC-V configuration in Haskell’s type
system (compile-time guarantees)

* EXxpress encoding and semantics in an embedded
DSL to allow translation to other languages and
environments

* Represent core |ISA as data, rather than Haskell
functions, so it can be manipulated directly and
translated into other environments
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Type-level RISC-V

Configuration
e RISC-V configurability:

o 32-bit/64-bit
 Base ISA + extensions (M, A, F/D, C, ...)

* We capture the contiguration of a RISC-V system as a
type parameter for our core data types

* |nstructions in a particular extension can only be used
if it Is known that the configuration supports that
extension



Type-level RISC-V
Configuration

data RV = RVConfig (BaseArch, Extensions)

data BaseArch = RV32
| RV64
| RV128



Type-level RISC-V
Configuration

data Opcode :: RV -> Format -> * where
Add :: Opcode rv R
Addw :: 64 <= RVWidth rv => Opcode rv R

Mul :: MEXt << rv => Opcode rv R



GRIFT semantics DSL

* Instruction semantics represented in an embedded DSL, with
AST nodes for:

* Arithmetic and bitvector operations
* Register/memory accesses
 Reading from instruction operands

 Dependently typed, using type-level naturals in GHC to track
bitvector widths

» “Shape” of instruction (number and size of operands) captured
as a type parameter



GRIFT semantics DSL

Mul :: MExt << rv => Opcode rv R

Pair Mul $ instSemantics (Rd :< Rsl :< Rs2 :< Nil) $ do
comment "Multiplies x[rsl] by x[rs2] and writes the prod to x[rd]."
comment "Arithmetic overflow is ignored.”

rd :< rsl :< rs2 :< Nil <- operandEs

let x rsl = readGPR rsl
let x rs2 readGPR rs2

assignGPR rd (x _rsl mulE X rs2)
incrPC



GRIFT’s encoding
representation

* |nstructions are parameterized by “format”, which
determines operand number and width

* Format determines mapping between operands
and their locations in the instruction

* The fixed bits of a particular instruction must also
be defined to perform encoding and decoding



GRIFT’s encoding
representation

Mul :: MExt << rv => Opcode rv R

Pair Mul (OpBits RRepr (0b0110011 :< 0b000 :< 0b0000001 :< Nil))



GRIFT simulator

~40,000 Instructions per second
Disassembles ELF binaries compiled by gcc

Interprets semantics DSL code for each instruction
against a concrete machine state

Dumps output to terminal as directed (register file,
section of memory)



GRIFT simulator —
coverage analysis

Bonus feature of simulator (available via command-
line options)

Tracks coverage of individual instructions based on
the branching structure of their semantics as
expressed in semantics DSL

Discover coverage holes in RISC-V compliance suites

Notion of coverage is limited, but could be refined for
particular needs



Other RISC-V Formal
Specification Efforts

* SAIL RISC-V (Cambridge)

* riscv-semantics (MIT)

* Forvis (Bluespec)

« Kami RISC-V (MIT/Si-Five)
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Floating-point
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Conclusion

o GRIFT: A Haskell library comprising a formal RISC-V specification

e RISC-V configuration expressed via Haskell types

 Instruction encoding/semantics expressed in an embedded DSL
e Future work:

« Applications: binary analysis, hardware/software verification

e Other backends (Coqg, ACL2, Verilog, PDF manuals)

« Automated test generation

e Concurrency?
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