
GRIFT:  
A richly-typed, deeply-embedded 

RISC-V semantics written in Haskell

Ben Selfridge, Galois Inc. 
September 13, 2019



Overview

• RISC-V & the RISC-V Formal Specification Task 
Group 

• GRIFT walkthrough and demo 

• Questions



RISC-V
• Open source instruction set architecture developed at UC Berkeley 

• Attempts to avoid cruft and stagnation of proprietary ISAs 

• Base instruction set (“I”) is very small (~40 instructions) 

• Other instructions available via extensions (M, A, F, D, C, …) 

• Overall design emphasizes configurability across various 
parameters (register width, available extensions) 

• Example configurations: RV32I, RV64IMAFDC, etc. 

• Evolution of RISC-V standards and artifacts is stewarded by the 
RISC-V Foundation via a number of “task groups”



RISC-V Formal Specification 
Task Group

• Goal: Develop a formal specification of the RISC-V 
instruction set architecture that is: 

• Precise/unambiguous 

• Readable (as text) 

• Executable 

• Useful for hardware engineers and formal 
methods engineers



GRIFT
• “Galois RISC-V Formal Tools” (GRIFT) is our 

contribution to the RISC-V Formal Spec Group 

• Formalizes instruction encoding and semantics in 
embedded domain-specific language (eDSL) 
within Haskell, as a library 

• Includes command-line tools for simulation, 
coverage analysis, and documentation/pretty 
printing



GRIFT: Design goals
• Express RISC-V configuration in Haskell’s type 

system (compile-time guarantees) 

• Express encoding and semantics in an embedded 
DSL to allow translation to other languages and 
environments 

• Represent core ISA as data, rather than Haskell 
functions, so it can be manipulated directly and 
translated into other environments





Type-level RISC-V 
Configuration

• RISC-V configurability: 

• 32-bit/64-bit 

• Base ISA + extensions (M, A, F/D, C, …) 

• We capture the configuration of a RISC-V system as a 
type parameter for our core data types 

• Instructions in a particular extension can only be used 
if it is known that the configuration supports that 
extension



Type-level RISC-V 
Configuration



Type-level RISC-V 
Configuration



GRIFT semantics DSL
• Instruction semantics represented in an embedded DSL, with 

AST nodes for: 

• Arithmetic and bitvector operations 

• Register/memory accesses 

• Reading from instruction operands 

• Dependently typed, using type-level naturals in GHC to track 
bitvector widths 

• “Shape” of instruction (number and size of operands) captured 
as a type parameter



GRIFT semantics DSL



GRIFT’s encoding 
representation

• Instructions are parameterized by “format”, which 
determines operand number and width 

• Format determines mapping between operands 
and their locations in the instruction 

• The fixed bits of a particular instruction must also 
be defined to perform encoding and decoding



GRIFT’s encoding 
representation



GRIFT simulator
• ~40,000 instructions per second 

• Disassembles ELF binaries compiled by gcc 

• Interprets semantics DSL code for each instruction 
against a concrete machine state 

• Dumps output to terminal as directed (register file, 
section of memory)



GRIFT simulator — 
coverage analysis

• Bonus feature of simulator (available via command-
line options) 

• Tracks coverage of individual instructions based on 
the branching structure of their semantics as 
expressed in semantics DSL 

• Discover coverage holes in RISC-V compliance suites 

• Notion of coverage is limited, but could be refined for 
particular needs



Other RISC-V Formal 
Specification Efforts

• SAIL RISC-V (Cambridge) 

• riscv-semantics (MIT) 

• Forvis (Bluespec) 

• Kami RISC-V (MIT/Si-Five)









Conclusion
• GRIFT: A Haskell library comprising a formal RISC-V specification 

• RISC-V configuration expressed via Haskell types 

• Instruction encoding/semantics expressed in an embedded DSL 

• Future work:  

• Applications: binary analysis, hardware/software verification 

• Other backends (Coq, ACL2, Verilog, PDF manuals) 

• Automated test generation 

• Concurrency?




