GRIFT:

A richly-typed, deeply-embedded
RISC-V semantics written in Haskell

Ben Selfridge, Galois Inc.
September 13, 2019

Overview

* RISC-V & the RISC-V Formal Specification Task
Group

 GRIFT walkthrough and demo

e Questions

RISC-V

Open source instruction set architecture developed at UC Berkeley
Attempts to avoid cruft and stagnation of proprietary |ISAs

e Base instruction set (“1”) is very small (~40 instructions)

* Other instructions available via extensions (M, A, F, D, C, ...)

Overall design emphasizes configurability across various
parameters (register width, available extensions)

« Example configurations: RV32l, RV64IMAFDC, etc.

Evolution of RISC-V standards and artifacts is stewarded by the
RISC-V Foundation via a number of “task groups”

RISC-V Formal Specification
Task Group

* Goal: Develop a formal specification of the RISC-V
instruction set architecture that is:

* Precise/unambiguous
 Readable (as text)
* Executable

* Usetul for hardware engineers and formal
methods engineers

GRIFT

e “Galois RISC-V Formal Tools” (GRIFT) is our
contribution to the RISC-V Formal Spec Group

* Formalizes instruction encoding and semantics In
embedded domain-specific language (eDSL)
within Haskell, as a library

* |ncludes command-line tools for simulation,
coverage analysis, and documentation/pretty
printing

GRIFT: Design goals

* Express RISC-V configuration in Haskell’s type
system (compile-time guarantees)

* EXxpress encoding and semantics in an embedded
DSL to allow translation to other languages and
environments

* Represent core |ISA as data, rather than Haskell
functions, so it can be manipulated directly and
translated into other environments

instruction data (encoding/semantics)

l expressed in

/ iInterpreted/translated

grift-sim grift-doc

|

| .

i i _ Coq/Verilog ' |

(simulation, (pretty : ackends |1 1estgeneration :
|

coverage) | |printed docs)

Type-level RISC-V

Configuration
e RISC-V configurability:

o 32-bit/64-bit
 Base ISA + extensions (M, A, F/D, C, ...)

* We capture the contiguration of a RISC-V system as a
type parameter for our core data types

* |nstructions in a particular extension can only be used
if it Is known that the configuration supports that
extension

Type-level RISC-V
Configuration

data RV = RVConfig (BaseArch, Extensions)

data BaseArch = RV32
| RV64
| RV128

Type-level RISC-V
Configuration

data Opcode :: RV -> Format -> * where
Add :: Opcode rv R
Addw :: 64 <= RVWidth rv => Opcode rv R

Mul :: MEXt << rv => Opcode rv R

GRIFT semantics DSL

* Instruction semantics represented in an embedded DSL, with
AST nodes for:

* Arithmetic and bitvector operations
* Register/memory accesses
 Reading from instruction operands

 Dependently typed, using type-level naturals in GHC to track
bitvector widths

» “Shape” of instruction (number and size of operands) captured
as a type parameter

GRIFT semantics DSL

Mul :: MExt << rv => Opcode rv R

Pair Mul $ instSemantics (Rd :< Rsl :< Rs2 :< Nil) $ do
comment "Multiplies x[rsl] by x[rs2] and writes the prod to x[rd]."
comment "Arithmetic overflow is ignored.”

rd :< rsl :< rs2 :< Nil <- operandEs

let x rsl = readGPR rsl
let x rs2 readGPR rs2

assignGPR rd (x _rsl mulE X rs2)
incrPC

GRIFT’s encoding
representation

* |nstructions are parameterized by “format”, which
determines operand number and width

* Format determines mapping between operands
and their locations in the instruction

* The fixed bits of a particular instruction must also
be defined to perform encoding and decoding

GRIFT’s encoding
representation

Mul :: MExt << rv => Opcode rv R

Pair Mul (OpBits RRepr (0b0110011 :< 0b000 :< 0b0000001 :< Nil))

GRIFT simulator

~40,000 Instructions per second
Disassembles ELF binaries compiled by gcc

Interprets semantics DSL code for each instruction
against a concrete machine state

Dumps output to terminal as directed (register file,
section of memory)

GRIFT simulator —
coverage analysis

Bonus feature of simulator (available via command-
line options)

Tracks coverage of individual instructions based on
the branching structure of their semantics as
expressed in semantics DSL

Discover coverage holes in RISC-V compliance suites

Notion of coverage is limited, but could be refined for
particular needs

Other RISC-V Formal
Specification Efforts

* SAIL RISC-V (Cambridge)

* riscv-semantics (MIT)

* Forvis (Bluespec)

« Kami RISC-V (MIT/Si-Five)

Author/Group

Licence

Metalanguage

Functional
coverage - Base
ISA and
extensions

Functional
coverage -
Privilege levels

Specification of
assembly syntax
and encoding

Concurrency

Forvis

Bluespec

MIT

Haskell

RV32/64IMAFDC

MUS,Sv32,39,48

no

no

Grift
Galois
GPL3

embedded
DSL in
Haskell

RV32/64GC

PP

no

Sail
SRI/Cambridge
BSD
Sail
RV32/RVE64IMAC
MUS,Sv32,39,48
yes
yes

riscv-plv
MIT

MIT

Haskell

RV32/64IMAF

Sv39

no

no

Kami
SiFive

Apache 2.0

Kami/Coq

RV32 IMAFC

no

no

no

Floating-point

Emulation

...emulation
speed

Use as test oracle
in tandem
verification

Use for software
coverage analysis

Theorem-prover
definitions

Use in
documentation

Use in test
generation

Forvis

via Softfloat

Haskell

?2?? IPS (40min
Linux boot)

yes

7?

via hs-to-coq?

to LaTeX

(at UPenn?)

Grift

via Softfloat

Haskell

40K IPS on
Intel Xeon
E312

no

yes

no

to text

no

Sail

no

generated C or
OCaml

300K IPS on Intel

i7-7700 (4min Linux

boot)

yes

7?

Coq,lsa,HOL4

to LaTeX in RISC-V

ISA

yes

riscv-plv

via Softfloat

Haskell

100K IPS on
6700HQ
(Linux boot)

yes

?77?

hs-to-coq

no

no

Kami

Native
implementation
of |IEEE 754-
2008

Verilator

Not measured

yes

?7??

Coq

no

no

Use for
concurrency-
model litmus test
evaluation

Test coverage -
riscv-tests suite

Test coverage -
RISC-V
compliance tests

Test coverage -
OS boots

Test coverage -
Concurrency
litmus tests

Forvis
no
?77?
all
Linux,FreeRTOS
no

Grift

no

yes

almost all

no

no

Sail
yes
yes
yes
Linux,FreeBSD,selL4
yes

riscv-plv

no

yes

yes

Linux

no

no

yes

yes

no

no

Kami

Conclusion

o GRIFT: A Haskell library comprising a formal RISC-V specification

e RISC-V configuration expressed via Haskell types

 Instruction encoding/semantics expressed in an embedded DSL
e Future work:

« Applications: binary analysis, hardware/software verification

e Other backends (Coqg, ACL2, Verilog, PDF manuals)

« Automated test generation

e Concurrency?

[1] https://github.com/GaloisInc/grift. [11] C. Baaij, M. Kooijman, J. Kuper, W. Boeijink, and

[2] https://github.com/rsnikhil/Forvis_ M. Gerards. Cash: Structural descriptions of syn-
RISCV-ISA-Spec. chronous hardware using haskell. In Proceedings of
[3] https://github.com/mit-plv/ the 13th EUROMICRO Conference on Digital System
riscv-semantics. Design: Architectures, Methods and Tools, pages 714—
[4] https://github.com/riscv/ 721, United States, 9 2010. IEEE Computer Society.
riscv-compliance. eemcs-eprint-18376.
[S] https://github.com/rems-project/ [12] M. Janota and G. Botterweck. Formal approach
sail-riscv. to integrating feature and architecture models. In
[6] https://github.com/sifive/ J. L. Fiadeiro and P. Inverardi, editors, Fundamen-
RiscvSpecFormal. tal Approaches to Software Engineering, pages 31-45,
[7] https://github.com/GaloisInc/macaw. Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
[8] Formal specification task group. https://lists. [13] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented
riscv.org/g/tech-formalspec. project line engineering. [EEE Softw., 19(4):58-65,
[9] A. Armstrong, T. Bauereiss, B. Campbell, S. Flur, K. E. July 2002.
Gray, P. Mundkur, R. M. Norton, C. Pulte, A. Reid, and [14] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and
P. Sewell. Detailed models of instruction set architec- S. Weirich. Total haskell is reasonable coq. CoRR,
tures: From pseudocode to formal semantics. Auto- abs/1711.09286, 2017.
mated Reasoning Workshop, 2018. [15] K. Waterman, Andrew; Asanovic. The risc-v instruc-
[10] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, tion set manual, volume 1: Unprivileged isa, June 2019.
K. E. Gray, R. M. Norton, P. Mundkur, M. Was- https://riscv.org/specifications/.

sell, J. French, C. Pulte, S. Flur, I. Stark, N. Krish-
naswami, and P. Sewell. Isa semantics for armv8-a,

risc-v, and cheri-mips. Proc. ACM Program. Lang.,
3(POPL):71:1-71:31, Jan. 2019.

