
– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

INSTRUCTION SET ARCHITECTURE
SPECIF ICATION, VERIF ICATION,
AND VALIDATION USING
ALGORITHMIC C AND ACL2

David Hardin
Collins Aerospace

<first>.<last>@collins.com

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

INTRODUCTION

• Floating-point hardware verification is a signature success of formal methods

• Automated theorem proving has been used in the verification of many floating-
point hardware designs, including those from:

• AMD
• ARM
• Centaur (x86-compatible)
• Intel
• Oracle (SPARC)

• In this talk, we will describe an experiment in the use of a particular approach to
floating-point verification to create a performant Instruction Set Architecture (ISA)
simulator, of the sort commonly written during ISA development

• Implementable in either software or (FPGA-based) hardware
• Supports proofs of correctness for programs targeting that ISA

!2

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

THE RUSSINOFF-O’LEARY APPROACH TO
FLOATING POINT HARDWARE VERIF ICATION

• The floating-point hardware verification approach we
employ was developed by David Russinoff and John
O’Leary, while both were at Intel (ACL2 Workshop 2014)

• The approach was initially based on SystemC, and
was called MASC

• Russinoff changed the source language from
SystemC to Algorithmic C after he moved to ARM,
made several enhancements, and renamed the
system RAC (Restricted Algoritmic C)

• RAC is extensively documented in Russinoff’s 2018 book,
Formal Verification of Floating-Point Hardware Design: A
Mathematical Approach, wherein RAC is applied to the
verification of realistic ARM floating-point designs

• RAC, and the verifications described in the book, are
all available as part of the standard ACL2 distribution

!3

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

ALGORITHMIC C

• The Algorithmic C datatypes “provide a basis for writing bit-accurate
algorithms to be synthesized into hardware”

• The Algorithmic C datatypes are defined via an open source C++ header file
that users can #include in their designs

• No runtime library required

• Example use:
• typedef ac_int<112,false> ui112;

 declares an unsigned 112-bit type used in floating-point hardware datapaths

• Supported by Mentor hardware synthesis tools

• Further information is available at https://hlslibs.org

!4

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RESTRICTED ALGORITHMIC C (RAC)

• Restricted Algortihmic C defines a C subset that promotes proof, hardware
synthesis, and simulation

• Use case: A hardware developer expresses hardware functionality in RAC, which
is then translated into a theorem prover language used by the verification expert

• RAC encompasses many of the restrictions common in “high-assurance” C, such
as no function pointers, disallowing recursion, etc.

• RAC also disallows all pointers, as well as function side-effects
• Certain control constructs (e.g., breaking out of a for loop) are disallowed

• Provides support for bit slices and multiple-value return

• For more information on RAC, please consult Chapter 15 of Russinoff’s book

!5

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

TOOLCHAIN FOR THE CURRENT WORK

!6

RAC Source
Code

ACL2
Theorem

Prover
RAC-to-ACL2

Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

Synthesis,
Simulation, Test,

Equivalence
Checking

“Verification
Side”

“Design
Side”

Codewalker

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

ACL2

• ACL2 is “A Computational Logic for Applicative Common Lisp”, developed by Matt
Kaufmann and J Moore

• ACL2 is a winner of the ACM Software Systems Award

• ACL2 developers model their system as Common Lisp functions, then state and
prove theorems about their model using ACL2’s highly automated proof heuristics

• These functions and theorems are gathered into libraries, called books, which
are proved once, then utilized many times

• ACL2 has been used in many large academic and industrial verification efforts:
• Floating-point unit verification (AMD, ARM, Centaur, Intel, Oracle)
• AAMP7 separation kernel microcode and Green Hills INTEGRITY-178B

kernel information flow verification (Collins Aerospace)
• Used to certify the correctness of the “world’s largest math proofs” (Heule)

• Proofs are discovered by massively parallel SAT solving

!7

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

BR IDGING THE DESIGN/VERIF ICATION GULF

• A key issue in the formal verification of engineering artifacts is the gulf between the sorts of
programs that can be readily specified and verified, and the sorts of programs that “real-
world” developers actually write:

• The Russinoff-O’Leary toolchain, in combination with the ACL2 theorem prover, does an
admirable job of bridging these two worlds

!8

Formal Verification “Comfort Zone” Real World

Functional Programming Imperative Programming

Total, terminating functions Partial, potentially non-terminating functions

Non-tail-recursive functions Loops

Okasaki-style pure functional algebraic data types Structs and Arrays

Infinite-precision Integers Modular Integers

Linear Arithmetic Linear and non-linear arithmetic

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR

• Translates loops into tail-recursive functions

• Generates ACL2 “measures” to aid in function termination proofs
• All functions to be admitted into ACL2 must be proved to terminate
• Termination proofs are conducted mostly automatically by ACL2,

with hints provided by the measure annotations (if needed)

• Translates fixed-width integer operations into functions defined in
Russinoff’s “RTL” (Register Transfer Language) ACL2 books

• Ensures that translated operations are “wrapped” with an
appropriate RTL bit-width coercion operator so as to accurately
translate modular integer arithmetic

• RTL is described in detail in Part I of Russinoff’s book

!9

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

RAC-TO-ACL2 TRANSLATOR (CONT’D.)

• Converts assignments to Lisp let-bindings

• Converts struct/array reads/writes to ACL2 record gets/sets, for which
get-over-set, set-over-get, etc. theorems are available

• In addition, ACL2’s powerful arithmetic capability allows it to reason
about non-linear arithmetic expressions

• ACL2 also features a very capable induction scheme generator
• ACL2 automatically finds suitable induction schemes for the vast

majority of inductive proof attempts, including hybrid schemes

• …allowing us to reason about real-world designs expressed in RAC

!10

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

CODEWALKER

• A new facility as of ACL2 7.0 (January 2015), due to J Moore
• Performs “decompilation into logic” of a machine-code program to a

series of “semantic functions” that summarize the program’s effect on
machine state

• Works with an instruction set description written in the usual ACL2
“machine interpreter” style, as earlier described

• Produces proofs that the generated semantic functions are correct
• Inspired by Magnus Myreen’s Ph.D. thesis (2008)
• Myreen’s decompiler utilizes the HOL4 theorem prover
• Three main Codewalker API’s utilized in our work:

• def-model-api
• def-semantics
• def-projection

!11

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

CODEWALKER (CONT’D.)

• def-model-api instructs Codewalker on the basics of the machine model:
• Name of the machine interpreter, machine types, how to access/update

elements of the machine state
• def-semantics is the main workhorse of Codewalker. It creates “semantic functions”

summarizing the actions of machine code segments on machine state
• Semantic functions are generated by symbolic simulation of the machine

previously described to def-model-api.
• The machine interpreter function is not part of the generated semantic functions

• def-semantics also generates a ‘clock’ function providing the number of
instruction steps the interpreter must execute to cover a given program counter
range

• Finally, def-semantics generates a theorem that the semantic function
correctly summarizes the changes to the machine state produced by executing the
machine interpreter for the number of steps indicated by the generated clock
function.

• def-projection takes a semantic function generated by def-semantics, and
‘projects out’ a function that computes the final value of some machine state component

!12

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

THE EXPERIMENT

• Develop an Instruction Set Architecture (ISA) simulator for a representative
ISA in RAC

• An ISA simulator is routinely developed (mostly in C/C++) during
development

• Provides a vehicle for ISA experimentation, compilation toolchain
development, etc.

• Much faster than RTL-level simulators

• Translate the ISA simulator to ACL2 using the RAC toolchain, and determine
whether the translated ISA interpreter can serve as input to Codewalker

• Perform machine code correctness proofs for programs written in our ISA
using the decompilation-into-logic facilities of Codewalker

!13

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

THE ISA: LEG64

• LEG64 is a 64-bit ISA similar to a popular ISA named for an appendage

• RISC-style, three-address, 32-bit fixed-format instructions

• 64-bit datapaths

• Harvard architecture

• Simple, but useful instruction set that allows us to compile C code for
the LEG64 target

!14

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

LEG64 MACHINE STATE IN RAC

!15

struct leg64St {
 ui10 pc;
 ui12 sp;
 array<ui64, REG_SZ>regs;
 array<ui64, DMEM_SZ>dmem;
 array<ui32, CMEM_SZ>cmem;
 ui8 opcode; // Current decoded instruction
 ui8 op1;
 ui8 op2;
 ui8 op3;
 ui1 C; // Carry Status Flag
 ui1 N; // Negative Status Flag
 ui1 Z; // Zero Status Flag
 ui1 V; // oVerflow Status Flag
};

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

LEG64 ISA S IMULATOR CODE IN RAC
~ 8 0 0 L I N E S O F C C O D E

!16

leg64St do_ADD(leg64St s) {
 s.regs[s.op1] = s.regs[s.op2] + s.regs[s.op3];
 return s; }

// Instruction selector
leg64St do_Inst(leg64St s) {
 ui8 opc = s.opcode;

 if (opc == NOP) {
 return do_NOP(s);
 …} else if (opc == ADD) {
 return do_ADD(s);…}

// Instruction stepper
leg64St leg64step(leg64St s) {
 return do_Inst(nextInst(s)); }

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

LEG64 ISA S IMULATOR TRANSLATED TO ACL2
~ 8 0 0 L I N E S O F A C L 2

!17

(DEFUN DO_ADD (S)
 (AS 'REGS
 (AS (AG 'OP1 S)
 (BITS (+ (AG (AG 'OP2 S) (AG 'REGS S))
 (AG (AG 'OP3 S) (AG 'REGS S)))
 63 0)
 (AG 'REGS S)) S))

;; Instruction selector
(DEFUN DO_INST (S)
 (LET ((OPC (AG 'OPCODE S)))
 … (IF1 (LOG= OPC 3)
 (DO_ADD S)…)

;; Instruction stepper
(DEFUN LEG64STEP (S)
 (DO_INST (NEXTINST S)))

Note: ‘AG’ and ‘AS’ are ACL2
untyped record get and set,

respectively

Note: ‘(BITS N X Y)’ returns the bit slice of N
from bit X to bit Y, inclusive

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

EXAMPLE LEG64 PROGRAM: FACTORIAL

!18

unsigned long fact(unsigned long num, unsigned long acc) {
 if (num < 2) {
 return acc;
 } else {
 return fact(num - 1, acc * num);
 }
}

;; LEG64 Assembly Code

.L3: cmp r0, #0 ; r0 == 0?
 beq .L2 ; if so, done
 mul r1, r1, r0 ; r1 <- r1*r0
 sub r0, r0, #1 ; r0 <- r0-1
 b .L3 ; goto top
.L2: mov r0, r1 ; r0 <- r1
 ret ; return

– © 2019 Collins Aerospace, a United Technologies company. All rights reserved.

LEG64 FACTORIAL PROGRAM CODEWALKER
CORRECTNESS PROOF

!19

;; Mathematical factorial
(defun ! (n)
 (if (zp n) 1 (* n (! (- n 1)))))

;; Final correctness theorem: fact(num, acc) == acc * num!
(defthm reg-1-of-program1-is-acc-*-n!
 (implies
 (and
 (fact-routine-loadedp s)
 (integerp (ag 0 (ag ‘regs s))) (< 0 (ag 0 (ag 'regs s)))
 (< (ag 0 (ag 'regs s)) (expt 2 64))
 (integerp (ag 1 (ag 'regs s))) (<= 0 (ag 1 (ag 'regs s)))
 (< (ag 1 (ag 'regs s)) (expt 2 64))
 (= (ag 'pc s) 0))
 (= (ag 1 (ag 'regs (leg64stepn s (acl2::clk-0 s))))
 (bits (* (ag 1 (ag 'regs s)) (! (ag 0 (ag 'regs s)))) 63 0))))

© 2019 Collins Aerospace, a United Technologies company. All rights reserved.

CONCLUDING REMARKS

• Floating-point hardware verification tools and techniques can be employed for more
general hardware/software coassurance tasks
• The Russinoff-O’Leary RAC toolchain is a nice choice for writing ISA simulators
• Also exploring other uses, e.g. very high-assurance data structures

• We can use the ISA simulator written in RAC to prove properties of ISA programs using
a decompilation-into-logic technique
• Subject to scalability issues

• The RAC-to-ACL2 translator is untrusted code; it would be a worthwhile project to give
it a formal foundation

• The use of ACL2 typed, rather than untyped, records may improve proof automation
• Use of ACL2 stobjs would increase simulation performance, but complicate proofs

• Future work includes generation of verified software components that interface to
verified hardware components, both generated using this technique

!20

