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Overview
• Broad Verification Objective: prove that Centaur’s processors 

correctly implement the x86 ISA. 

- Verification of microoperations (uops), algorithms, prototypes, 
(parts of the) memory system. 

- Also: signal mapping, linting.
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Overview
• Broad Verification Objective: prove that Centaur’s processors 

correctly implement the x86 ISA. 

- Verification of microoperations (uops), algorithms, prototypes, 
(parts of the) memory system. 

- Also: signal mapping, linting.

• New-ish Focus: prove that Centaur’s processors execute a 
single x86 instruction correctly.  This involves reasoning about: 

- Instruction decoding. 

- For legal instructions, translation to corresponding uops. 

- Relating execution of these uops to the execution of the x86 
instruction.
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Challenges: Part 1
Complexity of an x86 Instruction Itself:

• Picking a candidate instruction: 
- Modifiers like prefixes, modes of operation. 
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Context (configuration bits, CPU features) affects almost everything.



Challenges: Part 2

Complexity of Microarchitecture:

• Translation: 
- Queues, feedback loops, instruction caches. 
- ISA-level instructions often translate to several uops. 
- Additionally, there can be a trap to the microcode ROM.
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• Execution: 
- Uops can be difficult to specify. 

‣ Specifications obtained by talking to logic designers. 
- Microcode ROM can have arbitrary-length programs. 

‣ Loops and jumps are common.
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Microarchitecture changes are frequent.



Goal: Single-Instruction Correctness
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• Scope of this project: 

- Front-end (i.e., translation of an instruction byte sequence to 
uops) and execution units (i.e., where uops are executed). 

- Do not account for register mapping, uop reordering, 
instruction caches, etc.
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• Scope of this project: 

- Front-end (i.e., translation of an instruction byte sequence to 
uops) and execution units (i.e., where uops are executed). 

- Do not account for register mapping, uop reordering, 
instruction caches, etc.

• Focus: 

(1) Specification:  
x86isa — formal, executable model of x86 ISA in ACL2. 

(2) Implementation: 
 Centaur’s microarchitecture RTL-level design definition. 

(3) Proof Methodology:  
A scalable way to relate (1) and (2).
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• inst.lst is a data structure that contains a list of all x86 instructions. 

• Initial version obtained by parsing the instruction description pages.
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• inst.lst is a data structure that contains a list of all x86 instructions. 
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(inst :mnemonic "VPMULLQ" 
      :opcode (OP :OP #ux_0F_38_40 
                :EVEX '(:128 :66 :0F38 :W1) 
                :FEAT '(:AVX512VL :AVX512DQ)) 
      :operands (ARG :OP1 '(:ModR/M.reg :XMM) 
                     :OP2 '(:EVEX.vvvv  :XMM) 

          :OP3 '(:ModR/M.r/m :XMM :MEM :M64BCST)) 
      :fn '(evex-vpmullq-spec) 
      :excep '((:ex (chk-exc :TYPE-E4))))

Specification: inst.lst in



• We generate code automatically from inst.lst: 

- Functions to perform instruction decoding. 

- Functions to dispatch control to semantic functions. 

- Functions and theorems to verify Centaur’s implementation. 
‣ Pick a candidate family of instructions.
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• We generate code automatically from inst.lst: 

- Functions to perform instruction decoding. 

- Functions to dispatch control to semantic functions. 

- Functions and theorems to verify Centaur’s implementation. 
‣ Pick a candidate family of instructions.

• Easy to add support for new instructions: 

- Decoding: add an entry to inst.lst. 

- Concrete/Symbolic Execution: list the appropriate semantic 
function in that entry.
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Specification: inst.lst in
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Implementation:                        

We obtain a model of the RTL (from SystemVerilog source) in ACL2 
using ACL2’s VL/SV libraries: 

- VL: parse SystemVerilog code into an ACL2 representation. 

- SV: assign semantics to the SystemVerilog code.
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SystemVerilog RTL Definition

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL 
execution

Design                        



Proof Methodology

• Goal: prove that the RTL model 
is consistent with x86isa. 

• Strategy: Reduce the problem 
into proving three main kinds 
of component lemmas.
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• Use GL library in ACL2 to translate each lemma into a propositional 
formula for bit-blasting using SAT, BDDs, and AIG rewriting. 

• Each kind of lemma may require further decomposition. 



Lemma 1: Decode
• Inputs: a byte sequence and the 

current x86 configuration. 

• Outputs: either a well-formed x86 
instruction (correlated to 
inst.lst) or an exception.
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• Proof Goal: x86isa and RTL decode functions are consistent. 

• Decomposition: reduction by cases due to: 

- Parsing of the byte sequence (e.g., instruction prefixes) 

- Configuration for exception generation drawn from inst.lst

New



• Inputs: a well-formed x86 
instruction (correlated to 
inst.lst) and the current 
x86 configuration.  

• Outputs: a sequence of uops 
implementing the instruction. 
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Lemma 2: Translation & Microcode
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• Inputs: a well-formed x86 
instruction (correlated to 
inst.lst) and the current 
x86 configuration.  

• Outputs: a sequence of uops 
implementing the instruction. 
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• Proof Goal: execution of the generated uop sequence results in a 
state consistent with instruction execution. 

• Decomposition: split proof for complex instructions that have: 

- Longer microcode programs 

- Special input/data cases

Lemma 2: Translation & Microcode

New



Lemma 3: Uop Execution

• Inputs: uop to execute and data. 

• Outputs: result from uop execution.  
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Prior 
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Lemma 3: Uop Execution

• Inputs: uop to execute and data. 

• Outputs: result from uop execution.  
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• Proof Goal: the RTL execution units produce a computational result 
consistent with the specification used in the uop model. 

• Decomposition: split proof for uops that have special input/data 
cases (e.g., near/far paths for FP adders).

Prior 
work



Conclusion

x86isa and the uop model:

- Provide specifications for the verification of the hardware design.

- Are leveraged for proof decomposition and lemma generation.

- Reduce inputs required from the users:
‣ E.g., automatically derive constraints for legal instantiations of 

an instruction, given just the mnemonic and configuration.
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Conclusion

x86isa and the uop model:

- Provide specifications for the verification of the hardware design.

- Are leveraged for proof decomposition and lemma generation.

- Reduce inputs required from the users:
‣ E.g., automatically derive constraints for legal instantiations of 

an instruction, given just the mnemonic and configuration.

Along with formal verification of execution units, it is entirely feasible to 
verify single-instruction execution of processor front-ends.
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Future Work/WIP

• Automation: 

- Automatically prove the correctness of simple instructions. 
‣ Complex ones may require some manual intervention/guidance. 

- Automatically check that component lemmas cover all possible cases.
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• Symbolizing Inputs: 

- Allowing more symbolic fields in our inputs. 
‣ Coalesce many similar instruction invocations in one proof. 

- E.g., the proofs for an AVX512 instruction that supports both masking 
modes can be combined.
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