
SpISA 2019

Shilpi Goel & Rob Sumners
{shilpi,rsumners}@centtech.com

Using x86isa for
Microcode Verification

Overview
• Broad Verification Objective: prove that Centaur’s processors

correctly implement the x86 ISA.

- Verification of microoperations (uops), algorithms, prototypes,
(parts of the) memory system.

- Also: signal mapping, linting.

!2

Overview
• Broad Verification Objective: prove that Centaur’s processors

correctly implement the x86 ISA.

- Verification of microoperations (uops), algorithms, prototypes,
(parts of the) memory system.

- Also: signal mapping, linting.

• New-ish Focus: prove that Centaur’s processors execute a
single x86 instruction correctly. This involves reasoning about:

- Instruction decoding.

- For legal instructions, translation to corresponding uops.

- Relating execution of these uops to the execution of the x86
instruction.

!2

Challenges: Part 1
Complexity of an x86 Instruction Itself:

• Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

!3

Challenges: Part 1
Complexity of an x86 Instruction Itself:

• Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

• Decoding:
- Variable-length instructions.
- Exceptions.

!3

Challenges: Part 1
Complexity of an x86 Instruction Itself:

• Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

• Decoding:
- Variable-length instructions.
- Exceptions.

• Functional Behavior:
- Long specifications; lots of little details.
- Several instructions affect a lot of machine state.
- Deviations from“usual” behavior.

!3

Challenges: Part 1
Complexity of an x86 Instruction Itself:

• Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

• Decoding:
- Variable-length instructions.
- Exceptions.

• Functional Behavior:
- Long specifications; lots of little details.
- Several instructions affect a lot of machine state.
- Deviations from“usual” behavior.

!3

Context (configuration bits, CPU features) affects almost everything.

Challenges: Part 2

Complexity of Microarchitecture:

• Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

!4

Challenges: Part 2

Complexity of Microarchitecture:

• Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

• Execution:
- Uops can be difficult to specify.

‣ Specifications obtained by talking to logic designers.
- Microcode ROM can have arbitrary-length programs.

‣ Loops and jumps are common.

!4

Challenges: Part 2

Complexity of Microarchitecture:

• Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

• Execution:
- Uops can be difficult to specify.

‣ Specifications obtained by talking to logic designers.
- Microcode ROM can have arbitrary-length programs.

‣ Loops and jumps are common.

!4

Microarchitecture changes are frequent.

Goal: Single-Instruction Correctness

!5

• Scope of this project:

- Front-end (i.e., translation of an instruction byte sequence to
uops) and execution units (i.e., where uops are executed).

- Do not account for register mapping, uop reordering,
instruction caches, etc.

Goal: Single-Instruction Correctness

!5

• Scope of this project:

- Front-end (i.e., translation of an instruction byte sequence to
uops) and execution units (i.e., where uops are executed).

- Do not account for register mapping, uop reordering,
instruction caches, etc.

• Focus:

(1) Specification:
x86isa — formal, executable model of x86 ISA in ACL2.

(2) Implementation:
 Centaur’s microarchitecture RTL-level design definition.

(3) Proof Methodology:
A scalable way to relate (1) and (2).

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

Prior
work

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

Prior
work

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

Prior
work

New

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

Prior
work

New

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

*

Prior
work

New

New

decode execute

inst.lst x86isa

!6

Our Process
Formal (in)Sources

simulators

disassemblers

x86 manuals

SystemVerilog RTL Definition
uop model

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

*

Prior
work

New

New
New

• inst.lst is a data structure that contains a list of all x86 instructions.

• Initial version obtained by parsing the instruction description pages.

!7

Specification: inst.lst in

• inst.lst is a data structure that contains a list of all x86 instructions.

• Initial version obtained by parsing the instruction description pages.

!7

(inst :mnemonic "VPMULLQ"
 :opcode (OP :OP #ux_0F_38_40
 :EVEX '(:128 :66 :0F38 :W1)
 :FEAT '(:AVX512VL :AVX512DQ))
 :operands (ARG :OP1 '(:ModR/M.reg :XMM)
 :OP2 '(:EVEX.vvvv :XMM)

 :OP3 '(:ModR/M.r/m :XMM :MEM :M64BCST))
 :fn '(evex-vpmullq-spec)
 :excep '((:ex (chk-exc :TYPE-E4))))

Specification: inst.lst in

• We generate code automatically from inst.lst:

- Functions to perform instruction decoding.

- Functions to dispatch control to semantic functions.

- Functions and theorems to verify Centaur’s implementation.
‣ Pick a candidate family of instructions.

!8

Specification: inst.lst in

New

• We generate code automatically from inst.lst:

- Functions to perform instruction decoding.

- Functions to dispatch control to semantic functions.

- Functions and theorems to verify Centaur’s implementation.
‣ Pick a candidate family of instructions.

• Easy to add support for new instructions:

- Decoding: add an entry to inst.lst.

- Concrete/Symbolic Execution: list the appropriate semantic
function in that entry.

!8

Specification: inst.lst in

New

Implementation:

We obtain a model of the RTL (from SystemVerilog source) in ACL2
using ACL2’s VL/SV libraries:

- VL: parse SystemVerilog code into an ACL2 representation.

- SV: assign semantics to the SystemVerilog code.

!9

SystemVerilog RTL Definition

ACL2/VL/SV

RTL model

decode translate/
microcode

uop RTL
execution

Design

Proof Methodology

• Goal: prove that the RTL model
is consistent with x86isa.

• Strategy: Reduce the problem
into proving three main kinds
of component lemmas.

!10

• Use GL library in ACL2 to translate each lemma into a propositional
formula for bit-blasting using SAT, BDDs, and AIG rewriting.

• Each kind of lemma may require further decomposition.

Lemma 1: Decode
• Inputs: a byte sequence and the

current x86 configuration.

• Outputs: either a well-formed x86
instruction (correlated to
inst.lst) or an exception.

!11 New

Lemma 1: Decode
• Inputs: a byte sequence and the

current x86 configuration.

• Outputs: either a well-formed x86
instruction (correlated to
inst.lst) or an exception.

!11

• Proof Goal: x86isa and RTL decode functions are consistent.

• Decomposition: reduction by cases due to:

- Parsing of the byte sequence (e.g., instruction prefixes)

- Configuration for exception generation drawn from inst.lst

New

• Inputs: a well-formed x86
instruction (correlated to
inst.lst) and the current
x86 configuration.

• Outputs: a sequence of uops
implementing the instruction.

!12

Lemma 2: Translation & Microcode

New

• Inputs: a well-formed x86
instruction (correlated to
inst.lst) and the current
x86 configuration.

• Outputs: a sequence of uops
implementing the instruction.

!12

• Proof Goal: execution of the generated uop sequence results in a
state consistent with instruction execution.

• Decomposition: split proof for complex instructions that have:

- Longer microcode programs

- Special input/data cases

Lemma 2: Translation & Microcode

New

Lemma 3: Uop Execution

• Inputs: uop to execute and data.

• Outputs: result from uop execution.

!13
Prior
work

Lemma 3: Uop Execution

• Inputs: uop to execute and data.

• Outputs: result from uop execution.

!13

• Proof Goal: the RTL execution units produce a computational result
consistent with the specification used in the uop model.

• Decomposition: split proof for uops that have special input/data
cases (e.g., near/far paths for FP adders).

Prior
work

Conclusion

x86isa and the uop model:

- Provide specifications for the verification of the hardware design.

- Are leveraged for proof decomposition and lemma generation.

- Reduce inputs required from the users:
‣ E.g., automatically derive constraints for legal instantiations of

an instruction, given just the mnemonic and configuration.

!14

Conclusion

x86isa and the uop model:

- Provide specifications for the verification of the hardware design.

- Are leveraged for proof decomposition and lemma generation.

- Reduce inputs required from the users:
‣ E.g., automatically derive constraints for legal instantiations of

an instruction, given just the mnemonic and configuration.

Along with formal verification of execution units, it is entirely feasible to
verify single-instruction execution of processor front-ends.

!14

Future Work/WIP

• Automation:

- Automatically prove the correctness of simple instructions.
‣ Complex ones may require some manual intervention/guidance.

- Automatically check that component lemmas cover all possible cases.

!15

Future Work/WIP

• Automation:

- Automatically prove the correctness of simple instructions.
‣ Complex ones may require some manual intervention/guidance.

- Automatically check that component lemmas cover all possible cases.

!15

• Symbolizing Inputs:

- Allowing more symbolic fields in our inputs.
‣ Coalesce many similar instruction invocations in one proof.

- E.g., the proofs for an AVX512 instruction that supports both masking
modes can be combined.

SpISA 2019

Questions?

Using x86isa for
Microcode Verification

Shilpi Goel & Rob Sumners
{shilpi,rsumners}@centtech.com

