Using x861isa for
Microcode Verification

Shilpi Goel & Rob Sumners
{shilpi,rsumners}@centtech.com

SpISA 2019 Enm

Overview

e Broad Verification Objective: prove that Centaur’s processors
correctly implement the x86 ISA.

- Verification of microoperations (uops), algorithms, prototypes,
(parts of the) memory system.

- Also: signal mapping, linting.

Overview

e Broad Verification Objective: prove that Centaur’s processors
correctly implement the x86 ISA.

- Verification of microoperations (uops), algorithms, prototypes,
(parts of the) memory system.

- Also: signal mapping, linting.

e New-ish Focus: prove that Centaur’s processors execute a
single x86 instruction correctly. This involves reasoning about:

- Instruction decoding.
- For legal instructions, translation to corresponding uops.

- Relating execution of these uops to the execution of the x86
instruction.

Challenges: Part 1

Complexity of an x86 Instruction Itself:

e Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

Challenges: Part 1

Complexity of an x86 Instruction Itself:

e Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

e Decoding:
- Variable-length instructions.
- Exceptions.

Challenges: Part 1

Complexity of an x86 Instruction Itself:

e Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

e Decoding:
- Variable-length instructions.
- Exceptions.

e Functional Behavior:
- Long specifications; lots of little details.
- Several instructions affect a lot of machine state.
- Deviations from “usual” behavior.

Challenges: Part 1

Complexity of an x86 Instruction Itself:

e Picking a candidate instruction:
- Modifiers like prefixes, modes of operation.

e Decoding:
- Variable-length instructions.
- Exceptions.

e Functional Behavior:
- Long specifications; lots of little details.
- Several instructions affect a lot of machine state.
- Deviations from “usual” behavior.

Context (configuration bits, CPU features) affects almost everything.

3

Challenges: Part 2

Complexity of Microarchitecture:

e Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

Challenges: Part 2

Complexity of Microarchitecture:

e Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

e FExecution:
- Uops can be difficult to specity.
» Specifications obtained by talking to logic designers.
- Microcode ROM can have arbitrary-length programs.
» Loops and jumps are common.

Challenges: Part 2

Complexity of Microarchitecture:

e Translation:
- Queues, feedback loops, instruction caches.
- ISA-level instructions often translate to several uops.
- Additionally, there can be a trap to the microcode ROM.

e FExecution:
- Uops can be difficult to specity.

» Specifications obtained by talking to logic designers.
- Microcode ROM can have arbitrary-length programs.
» Loops and jumps are common.

Microarchitecture changes are frequent.

Goal: Single-Instruction Correctness

e Scope of this project:

- Front-end (i.e., translation of an instruction byte sequence to
uops) and execution units (i.e., where uops are executed).

- Do not account for register mapping, uop reordering,
instruction caches, etc.

Goal: Single-Instruction Correctness

e Scope of this project:

- Front-end (i.e., translation of an instruction byte sequence to
uops) and execution units (i.e., where uops are executed).

- Do not account for register mapping, uop reordering,
instruction caches, etc.

e Focus:
(1) Specification:
x86isa — formal, executable model of x86 ISA in ACL2.

(2) Implementation:
Centaur’s microarchitecture RTL-level design definition.

(3) Proof Methodology:
A scalable way to relate (1) and (2).

5

Our Process

Sources : Formal (in*ACL2)

\ LS. LEE (/U x86isa

Our Process

Sources : Formal (in*ACL2)

gt e

Our Process

Sources : Formal (in*ACL2)

o 1SS t - x86isa
- New

SystemVerilog RTL Definition
| | .
| ACL2/VL/SV decode translate/ " uop RTL

¥

g . .
microcode execution

RTL model

Our Process

Sources : Formal (in*ACL2)

o 1SS t - x86isa
- New

SystemVerilog RTL Definition 1 1
e Z
B ACL2/VL/SV decode — translate/ " uop RTL
- microcode execution
| RTL model

Our Process

Sources : Formal (in*ACL2)

o 1SS t - x86isa
- New

SystemVerilog RTL Definition
| | .
| ACL2/VL/SV decode translate/ " uop RTL

¥

g . .
microcode execution

RTL model

Our Process

Sources : Formal (in*ACL2)

\ decgdenii— execute
o 1SS t - x86isa
- New

uop model
SystemVerilog RTL Definition
[| l '
B ACL2/VL/SV decode — translate/ " uop RTL
- microcode execution
| RTL model

Our Process

Sources : Formal (in*ACL2)

\ decgdenii— execute
o 1SS t - x86isa
- New

; uop model
SystemVerilog RTL Definition ;
— - ||
B ACL2/VL/SV decode — translate/ " uop RTL
- microcode execution
| RTL model

Our Process

Sources : Formal (in*ACL2)

\ decgdenii— execute
o 1SS t - x86isa
- New

uop model
SystemVerilog RTL Definition .
: Prior
o work
B ACL2/VL/SV decode — translate/ " uop RTL
- microcode execution
| RTL model

Our Process

Sources : Formal (in*ACL2)

t AU\(/0
. q
/(> 1OSEERS x861isa
" New

uop model
SystemVerilog RTL Definition .
: Prior
1 - | ! | work
1 ACL2/VL/SV X decode — translate/ " uop RTL
: microcode execution
| RTL model

Our Process

Sources : Formal (in*ACL2)

t AU\(/0
. q
/(> 1OSEERS x861isa
" New

New
uop model
SystemVerilog RTL Definition .
: Prior
1 - | ! | work
1 ACL2/VL/SV X decode — translate/ " uop RTL
: microcode execution
| RTL model

Our Process

Sources : Formal (in ACL2)

\ decode —— execute
7y A /u
Cl’/() o | x861sa
T New

New uop model

SystemVerilog RTL Definition
y 44 E A . &
g o work,

N ACL2/VL/SV decode translate/ » uop RTL
- microcode execution

A 4

RTL model

Our Process

Sources : Formal (in ACL2)

x86 manuals \ deCQde : eXECute%
A A O 4
. o/u
disassemblers / w/() instilst ¢ x86isa

A 4

New uop model

SystemVerilog RTL Definition
y 44 E A . &
= o work

N ACL2/VL/SV decode translate/ » uop RTL
- microcode execution

A 4

RTL model

Our Process

Sources : Formal (in ACL2)

x86 manuals \ deCQde : eXECute%
A A J 4
. o/u
disassemblers / w/o instilst ¢ New |x86isa

A 4

New uop model

SystemVerilog RTL Definition
y 44 E A . &
= o work

N ACL2/VL/SV decode translate/ » uop RTL
- microcode execution

A 4

RTL model

Specification: inst. lst in X

e inst.lstisadata structure that contains a list of all x86 instructions.

e Initial version obtained by parsing the instruction description pages.

ymm3/m256/m64bcst

EVEX.128.66.0F38.W1 40 /r VIV AVX512VL | Multiply the packed qword signed integers in xmm2 and
VPMULLQ xmm1 {k1}z}, xmm2, AVX512DQ | xmm3/m128/m64bcst and store the low 64 bits of each
xmm3/m128/m64bcst product in xmm1 under writemask k1.

EVEX.256.66.0F38.W1 40 /r VIV AVX512VL | Multiply the packed qword signed integers in ymmZ2 and
VPMULLQ ymm1 {k1¥z}, ymm2, AVX512DQ | ymm3/m256/m64bcst and store the low 64 bits of each

product in ymm1 under writemask k1.

Specification: inst.lst in X

e inst.lstisadata structure that contains a list of all x86 instructions.

e Initial version obtained by parsing the instruction description pages.

EVEX.128.66.0F38.W1 40 /r C VIV AVX512VL | Multiply the packed qword signed integers in xmmZ2 and
VPMULLQ xmm1 {k1}z}, xmm2, AVX512DQ | xmm3/m128/m64bcst and store the low 64 bits of each
xmm3/m128/m64bcst product in xmm1 under writemask k1.
EVEX.256.66.0F38.W1 40 /r C VIV AVX512VL | Multiply the packed qword signed integers in ymmZ2 and
VPMULLQ ymm1 {k1}{z}, ymmZ, AVX512DQ | ymm3/m256/m64bcst and store the low 64 bits of each
ymm3/m256/m64bcst product in ymm1 under writemask k1.

(inst :mnemonic "VPMULLQ"
:opcode (OP :0P #ux OF 38 40
cEVEX "(:128 :66 :0F38 :Wl)
: FEAT '"(:AVX512VL :AVX512DQ))
:operands (ARG :0P1 '"(:ModR/M.reg :XMM)
:0P2 "(:EVEX.vvvv :XMM)
:0P3 '"(:ModR/M.r/m :XMM :MEM :M64BCST))
:fn '"(evex-vpmullg-spec)
cexcep '((:ex (chk-exc :TYPE-E4))))

[

Specification: inst.lst in X

e We generate code automatically from inst. lst:
- Functions to perform instruction decoding.
- Functions to dispatch control to semantic functions.
- Functions and theorems to verify Centaur’s implementation.

» Pick a candidate family of instructions.

8 New

Specification: inst.lst in X

e We generate code automatically from inst. lst:
- Functions to perform instruction decoding.
- Functions to dispatch control to semantic functions.
- Functions and theorems to verify Centaur’s implementation.

» Pick a candidate family of instructions.

e Easy to add support for new instructions:
- Decoding: add an entry to inst. lst.

- Concrete/Symbolic Execution: list the appropriate semantic
function in that entry.

8 New

Implementation: fenjaur

Design

We obtain a model of the RTL (from SystemVerilog source) in ACL2

using ACL2’s VL/SV libraries:

- VL: parse SystemVerilog code into an ACL2 representation.

- SV:assign semantics to the SystemVerilog code.

SystemVerilog RTL Definition

|

ACL2/VL/SV

decode

—

>

RTL model

translate/ —

microcode

uop RTL
execution

Proof Methodology

decod - t
ecgi ST o Goal: prove that the RTL model
> inst. lst </ 264])))
x861isa is consistent with x86isa.
I I e Strategy: Reduce the problem
into proving three main kinds
decode translate/ uop RTL I
microcode execution Of comp onent lemmas.

RTL model
e Use GL library in ACL2 to translate each lemma into a propositional

formula for bit-blasting using SAT, BDDs, and AIG rewriting.

e Each kind of lemma may require further decomposition.

10

Lemma 1: Decode

decode —> execute
A A O
U\L . 0/"
L
v v
I decode — uop RTL

RTL model

translate/
microcode

execution

e Inputs: a byte sequence and the
current x86 configuration.

e Outputs: either a well-formed x86
instruction (correlated to
inst. lst) or an exception.

11 New

Lemma 1: Decode

decode

—

AAU\

execute

g

inst.lst

/

Y Y

x86isa

I decode

translate/
microcode

uop RTL
execution

RTL model

e Inputs: a byte sequence and the
current x86 configuration.

e Outputs: either a well-formed x86
instruction (correlated to
inst. lst) or an exception.

e Proof Goal: x86isa and RTL decode functions are consistent.

e Decomposition: reduction by cases due to:

- Parsing of the byte sequence (e.g., instruction prefixes)

- Configuration for exception generation drawn from inst. lst

11 New

Lemma 2: Translation & Microcode

decgde execute

= e Inputs: a well-formed x86
NSt st \I Ix%isa instruction (correlated to

inst. lst) and the current
L, e model x86 configuration.
_ e Outputs: a sequence of uops
decode translate/ uop RTL
1 . —— il implementing the instruction.
RTL model

12 New

Lemma 2: Translation & Microcode

decgde execute

= e Inputs: a well-formed x86
inst.lst E\I Ix86isa

instruction (correlated to

inst. lst) and the current
L, e model x86 configuration.
_ e Outputs: a sequence of uops
decode - translate/ uop RTL
1 i —— execution implementing the instruction.
RTL model

e Proof Goal: execution of the generated uop sequence results in a
state consistent with instruction execution.

e Decomposition: split proof for complex instructions that have:
- Longer microcode programs

- Special input/data cases

12 New

Lemma 3: Uop Execution

‘ uop model ‘
I I e Inputs: uop to execute and data.

decode «T translate/ a‘ uop RTL e Outputs: result from uop execution.
microcode execution
RTL model

13

Lemma 3: Uop Execution

uop model

I

decode

RTL model

<T

translate/
microcode

i

uop RTL
execution

e Inputs: uop to execute and data.

e Outputs: result from uop execution.

e Proof Goal: the RTL execution units produce a computational result
consistent with the specification used in the uop model.

e Decomposition: split proof for uops that have special input/data
cases (e.g., near/far paths for FP adders).

Prior

13 work

Conclusion

x86isa and the uop model:
- Provide specifications for the verification of the hardware design.
- Are leveraged for proof decomposition and lemma generation.
- Reduce inputs required from the users:

» E.g., automatically derive constraints for legal instantiations of
an instruction, given just the mnemonic and configuration.

14

Conclusion

x86isa and the uop model:
- Provide specifications for the verification of the hardware design.
- Are leveraged for proof decomposition and lemma generation.
- Reduce inputs required from the users:

» E.g., automatically derive constraints for legal instantiations of
an instruction, given just the mnemonic and configuration.

Along with formal verification of execution units, it is entirely feasible to
verify single-instruction execution of processor front-ends.

14

Future Work/WIP

e Automation:
- Automatically prove the correctness of simple instructions.
» Complex ones may require some manual intervention/guidance.

- Automatically check that component lemmas cover all possible cases.

15

Future Work/WIP

e Automation:
- Automatically prove the correctness of simple instructions.
» Complex ones may require some manual intervention/guidance.

- Automatically check that component lemmas cover all possible cases.

e Symbolizing Inputs:
- Allowing more symbolic fields in our inputs.
» Coalesce many similar instruction invocations in one proof.

- E.g., the proofs for an AVX512 instruction that supports both masking
modes can be combined.

15

Using x861isa for
Microcode Verification

Shilpi Goel & Rob Sumners
{shilpi,rsumners}@centtech.com

Questions?

SpISA 2019 En ecamlmlogyr

