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The challenge

Any software verification tool worth its salt should be able to
prove itself correct.



The challenge

Any software verification tool worth its salt should be able to
prove itself correct.*



From scratch?

Rule #1 of formalization
Don’t try to formalize anything that wasn’t designed to be
formalized.

I It’s possible, but it forces you into a lot of bad design
decisions.

I The kinds of changes that formalization needs to impose
on a design have to happen early in the process.



From scratch?

Here are some examples of things that were not designed to be
formalized:

I C
I C++

I Java
I Scala
I Haskell
I ML
I OCaml
I Lisp

I Lean
I Coq
I Isabelle
I Agda
I HOL Light
I HOL4
I ACL2
I Metamath

Many of these languages present formally defined interfaces to
users, but the implementation, the compiler or theorem prover
itself, was not originally intended for formalization.



How much should be proven?

I Software correctness is not measured relative to physical
computers, it is measured relative to the abstract model
provided by hardware.

I Therefore: Software correctness is a mathematical
statement.

I Mathematical theorems can be proven.
I Therefore: Eliminating all software bugs is possible.

What’s stopping us?
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Metamath Zero
I Designed from the ground up as an efficient backend

theorem prover
I Assembly language for proofs

I Crazy fast (∼100MB/s)
I Can verify entire Metamath library of ∼30000 proofs in 500

ms
I The library of supporting material from PA for this project

checks in 5 ms (I/O bound)

I 730 lines of C / 1500 lines assembly (gcc)
I Additional tooling written in Haskell for proof authoring

(+ VS Code integration)
I Translations from other languages planned
I MM→MM0→ OpenTheory,Lean currently implemented

I Separate theorem statements from proofs
I Statements are in a formal abstract like human readable

format, say only what is needed to define the problem
I Proofs are in an efficient binary format, untrusted + checked



Formalizing x86

I For highest confidence, it should be as easy as possible for
anyone to audit the proof
I “Unusual” hardware is not an option
I Bare metal verification (no OS) is possible but should not be

required

I ⇒ Intel x86-64 + Linux

I Unfortunately this leaves many questionable parts in the
trust base
I Debuggers, root privilege software, firmware and hardware

all have the ability to interrupt the process, modify memory
in ways that break the assumptions, and continue the
program and there is no way to detect such tampering

I Large parts of firmware and hardware cannot even be
inspected because closed-source

I Backdoors (firmware update) exist
I A modern Cartesian demon (can the user see program

output?)
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Formalizing x86: Sail and K
I The primary source was the Sail formalization, cross

referenced against the Intel manual and Felix Cloutier’s
online opcode tables

I I looked at the K formalization as well, but I had difficulty
working with it
I Work was distributed across thousands of files
I Not much documentation
I Much of the spec was autogenerated, and it shows

I The Sail x86 formalization was incomplete and only
covered the essential instructions
I Just what the doctor ordered!
I I found a few minor bugs

I I did not find any easy way to translate either Sail or K to
FOL without writing my own parser for these
comparatively complex languages
I Translations and cross validation should be a high priority

now that there are competing specs on the scene
I Official Intel recognition? (forgive my naivete)



Show me the code!

Demo



Inductive types and recursion
def len (l: nat): nat;

theorem len0: $ len 0 = 0 $;

theorem lenS (a b: nat):

$ len (a : b) = suc (len b) $;

I The idea: use abstract def + theorems to allow definitions
that satisfy arbitrary equations

I Pro: avoids the need to give a concrete definition that may
be less clear

I Pro: Very flexible wrt different shapes of induction
I e.g. definition by recursion on lists from left and from right

I Con: Reader is responsible for checking completeness of
the equations
I It is possible to assert that the equations are exhaustive, but

it is not pretty

I Con: If the equations are not exhaustive, the definition can
resolve in an arbitrary way



Typing

theorem readSIBDisplacementT

(mod bbase q base l: nat):

$ bbase e. Regs /\

readSIBDisplacement mod bbase q base l ->

mod e. Bits 2 /\ mod != 3 /\

q e. u64 /\ base e. Base /\ l e. List u8 $;

I PA is essentially untyped; everything is nat
I peano.mm0 also includes wff and set :=N→ wff

I Typing is represented explicitly in the logic via
elementhood

I Types can be arbitrary predicates, so dependent types are
easy

I Automatic typing derivation is handled by the theorem
prover, not the logic (a.k.a. weak typing)



High level semantics & IO

I Config := u64 × (Regs→ u64) × Flags ×Memory
I Memory := u64→ P{R, W, X} × u8
I Step relation k k′ is true if k′ is the result of executing

one instruction from k (k, k′ ∈ Config)
I Step relation is nondeterministic when the ISA is

unspecified, or when I don’t care about the result (e.g. most
bits of the flags register)

I ¬∃k′, k k′ when k is invalid (would fault) or I don’t want
to model the result (∼43 / ∼1500 instructions modelled)

I Step relation terminates at a syscall instruction



High level semantics & IO

I KernelState := List u8 × List u8 × Config provides a crude
representation of the operating environment (Linux kernel)

I In the augmented state we can define the behavior of
syscalls open, read, write, fstat, mmap
I We don’t model the filesystem so read reads a giant block

of nondeterminism (which happens to be the proof)
I read(stdin) and write(stdout) consume from the input

list and push to the output list respectively

I Basic implementation of ELF file format sets up the initial
configuration

I Result: end-to-end semantics function
evalx86(elf : List u8) : List u8→ P(List u8)



Summary
I Done: Define an easily checkable low level proof language

(MM0)
I Done (×2): Write a verifier for the language (mm0-c,
mm0-hs)

I Done: Define Peano Arithmetic, finite set theory, inductive
types (peano.mm0)

I Done: Define the semantics of the language in itself
(mm0.mm0)

I Done: Define the semantics of x86 and ELF (x86.mm0)
I Done: Assert the existence of a correct verifier for the

language (x86-mm0.mm0)
I Done: Write a theorem prover for the language (MM1)
I Done: Prove peano.mm0 (peano.mm1)
I TODO: Prove x86.mm0
I TODO: Build a verifier in the logic and prove it correct (Prove
x86-mm0.mm0)
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