Formal Specification and Verification
of Floating-Point RTL with ACL2

David M. Russinoff
Arm Holdings

September 13, 2019

1/15

A verification methodology based on two components:

» RTL: An ACL2 library of definitions and lemmas
pertaining to register-transfer logic, floating-point
arithmetic, instruction specification and implementation

» RAC: An intermediate modeling language (subset of C++)
and a translator to the ACL2 logic

2/15

IEEE COMPLIANCE

[Each elementary arithmetic operation] shall be performed as
if it first produced an intermediate result correct to infinite
precision and then rounded that result ...

I
Rational X
Operands -+
Decode
Bit Vector

Inputs

Precise
Result

Round Rounded
Result
Encode
Bit Vector
Output

3/15

THE ACL2 RTL LIBRARY

(1) Register-transfer logic: bit vectors and logical operations

(2) Floating-point arithmetic: FP decomposition, formats,
rounding

(3) Behavioral specifications of elementary arithmetic
operations

(4) Implementation: algorithms and techniques

4/15

(1) REGISTER-TRANSFER LOGIC

» Bit slice and bit extraction operators:
x[i : j] = [(x mod 2/*1)/2/ |
x[i] = x[i : 1]

» Logical operations:
x=-x-1

y
x|ly=<% x
2([3]113])) + (x mod 2) | (y mod 2)
» Derived bitwise characterizations:
x[i] =1 — x[i]

(x| y)li] = x[i] |]

ifx=0o0orx=y
ify=20
otherwise

5/15

(2) FLOATING-POINT ARITHMETIC

» FP decomposition: x = sgn(x) - sig(x) - 267°()
» Exactness: x is n-exact < 2" sig(x) € Z

» Rounding according to various modes:

RTZ(x,n) = sgn(x)|2" sig(x)] pexpo(x)—n-+1

[x if x (n-1)-exact
RIO,) _{ RTZ(x,n-1) + sgn(x)2°7"@ 17" otherwise

6/15

(3) INSTRUCTION SPECIFICATION

Variations in architectural behavior, especially regarding
exceptional conditions (e.g., underflow, denormal operands,
exception precedence and interaction) necessitate separate
specifications for the ISAs of interest:

> x87

» SSE

> Arm

7/15

(4) ALGORITHMS AND OPTIMIZATIONS

» Addition: Carry-look-ahead adders, leading zero
anticipation, trailing zero anticipation

» Multiplication: Booth encoding schemes

» Division and square root: SRT algorithms, FMA-based
division

8/15

REPRESENTATION OF RTL 1IN ACL2

» AMD: Verilog-ACL2 translator generates an ACL2
function corresponding to each RTL signal

» Centaur: Verilog module converted to netlist of
S-expressions and executed by ACL2 hardware interpreter

» Arm: Intermediate C model is derived from RTL, checked
by SLEC, and translated to ACL2

9/15

SEQUENTIAL LOGIC EQUIVALENCE CHECKING

A common industrial practice is to check equivalence between
an RTL design and a trusted high-level C++ model with a
commercial tool. This approach suffers from two deficiencies:

» Legacy model is trusted because it has been used/tested
extensively, but it is inadequate as a specification and has
never been formally verified itself

» Micro-architectural gap between C model and RTL pushes
SLEC technology to its limits
» Limited opportunities for proof decomposition
» Elaborate proof scripts introduce possible source of error

» Complex SP operations take all day to check
» DP ops (FMA, FDIV, FSQRT) fail to converge

10/15

RESTRICTED ALGORITHMIC C (RAC)

» A primitive subset of C augmented by the register class
templates of Algorithmic C (Mentor Graphics)

» A design-specific RAC model, which performs the
essential computations of the design while eliminating
implementation details, may be efficiently checked against
RTL (SLEC, Hector)

» The RAC translator generates a compact ACL2 model that
may be mechanically verified against an architectural
specification

11/15

RAC FEATURES

v

v

Numerical data types: bool, uint, int (no pointers)
Composite types: arrays, st ructs, enums

Standard control constructs: i f, for, switch, return
(with certain restrictions)

Functions (value parameters only)

Arbitrary width integer and fixed point register class
templates (Algorithmic C)

Standard library class templates: array, tuple (facilitate
parameter passing)

12/15

RAC PARSER AND TRANSLATOR

Translation to ACL2 is a two-step process:

» C++ (Flex/Bison) parser produces an internal
representation

» C syntax — S-expressions
» Variable types — Explicit conversions

» ACL2 program generates ACL2 functions

» Assignment sequences — Nested bindings
» Iteration — Recursion

The parser also produces a pseudocode version of the model
(C/ Verilog syntax) suitable for design documentation

13/15

CASE STUDY: FP DIVIDER OF AN ARM PROCESSOR

vvyyy

v

Radix-4 SRT FDIV and FSQRT (HP, SP, DP)
27 DP iterations, 3/cycle for FDIV, 2/cycle for FSQRT
259 KB Verilog — 35 KB RAC — 42 KB ACL2

C Model and RTL produce identical remainders and
quotients at each iteration

SLEC execution time linear in operand width, 87 minutes
for DP FSQRT

ACL2 proof script consists of 1600 lemmas

Level of effort (modeling + verification): 3 man-months

14/15

REFERENCES

The RTL library and the RAC parser and translator reside in
the community books directory: of the ACL2 repository
(http://www.cs.utexas.edu/users/moore/acl2):

» books/rtl/README
» books/projects/rac/README

Documentation:

» Russinoff, “Formal Verification of Floating-Point Hardware
Designs: A Mathematical Approach”, Springer, 2018.

15/15

