
Formal Specification and Verification
of Floating-Point RTL with ACL2

David M. Russinoff
Arm Holdings

September 13, 2019

1/15

A verification methodology based on two components:

I RTL: An ACL2 library of definitions and lemmas
pertaining to register-transfer logic, floating-point
arithmetic, instruction specification and implementation

I RAC: An intermediate modeling language (subset of C++)
and a translator to the ACL2 logic

2/15

IEEE COMPLIANCE

[Each elementary arithmetic operation] shall be performed as
if it first produced an intermediate result correct to infinite
precision and then rounded that result ...

6

?

- -

Decode Encode

+
×
÷√

Round

Bit Vector
Inputs

Bit Vector
Output

Rational
Operands

Precise
Result

Rounded
Result

3/15

THE ACL2 RTL LIBRARY

(1) Register-transfer logic: bit vectors and logical operations
(2) Floating-point arithmetic: FP decomposition, formats,

rounding
(3) Behavioral specifications of elementary arithmetic

operations
(4) Implementation: algorithms and techniques

4/15

(1) REGISTER-TRANSFER LOGIC

I Bit slice and bit extraction operators:
x[i : j] = b(x mod 2i+1)/2jc
x[i] = x[i : i]

I Logical operations:
x̃ = −x− 1

x | y =

y if x = 0 or x = y
x if y = 0
2(b x

2c|b
y
2c) + (x mod 2) | (y mod 2) otherwise

I Derived bitwise characterizations:
x̃[i] = 1− x[i]
(x | y)[i] = x[i] | y[i]

5/15

(2) FLOATING-POINT ARITHMETIC

I FP decomposition: x = sgn(x) · sig(x) · 2expo(x)

I Exactness: x is n-exact⇔ 2n−1sig(x) ∈ Z
I Rounding according to various modes:

RTZ(x,n) = sgn(x)b2n−1sig(x)c2expo(x)−n+1

RTO(x,n) =
{

x if x (n-1)-exact
RTZ(x,n-1) + sgn(x)2expo(x)+1−n otherwise

6/15

(3) INSTRUCTION SPECIFICATION

Variations in architectural behavior, especially regarding
exceptional conditions (e.g., underflow, denormal operands,
exception precedence and interaction) necessitate separate
specifications for the ISAs of interest:

I x87
I SSE
I Arm

7/15

(4) ALGORITHMS AND OPTIMIZATIONS

I Addition: Carry-look-ahead adders, leading zero
anticipation, trailing zero anticipation

I Multiplication: Booth encoding schemes
I Division and square root: SRT algorithms, FMA-based

division

8/15

REPRESENTATION OF RTL IN ACL2

I AMD: Verilog-ACL2 translator generates an ACL2
function corresponding to each RTL signal

I Centaur: Verilog module converted to netlist of
S-expressions and executed by ACL2 hardware interpreter

I Arm: Intermediate C model is derived from RTL, checked
by SLEC, and translated to ACL2

9/15

SEQUENTIAL LOGIC EQUIVALENCE CHECKING

A common industrial practice is to check equivalence between
an RTL design and a trusted high-level C++ model with a
commercial tool. This approach suffers from two deficiencies:

I Legacy model is trusted because it has been used/tested
extensively, but it is inadequate as a specification and has
never been formally verified itself

I Micro-architectural gap between C model and RTL pushes
SLEC technology to its limits
I Limited opportunities for proof decomposition
I Elaborate proof scripts introduce possible source of error
I Complex SP operations take all day to check
I DP ops (FMA, FDIV, FSQRT) fail to converge

10/15

RESTRICTED ALGORITHMIC C (RAC)

I A primitive subset of C augmented by the register class
templates of Algorithmic C (Mentor Graphics)

I A design-specific RAC model, which performs the
essential computations of the design while eliminating
implementation details, may be efficiently checked against
RTL (SLEC, Hector)

I The RAC translator generates a compact ACL2 model that
may be mechanically verified against an architectural
specification

11/15

RAC FEATURES

I Numerical data types: bool, uint, int (no pointers)
I Composite types: arrays, structs, enums
I Standard control constructs: if, for, switch, return

(with certain restrictions)
I Functions (value parameters only)
I Arbitrary width integer and fixed point register class

templates (Algorithmic C)
I Standard library class templates: array, tuple (facilitate

parameter passing)

12/15

RAC PARSER AND TRANSLATOR

Translation to ACL2 is a two-step process:
I C++ (Flex/Bison) parser produces an internal

representation
I C syntax→ S-expressions
I Variable types→ Explicit conversions

I ACL2 program generates ACL2 functions
I Assignment sequences→ Nested bindings
I Iteration→ Recursion

The parser also produces a pseudocode version of the model
(C/Verilog syntax) suitable for design documentation

13/15

CASE STUDY: FP DIVIDER OF AN ARM PROCESSOR

I Radix-4 SRT FDIV and FSQRT (HP, SP, DP)
I 27 DP iterations, 3/cycle for FDIV, 2/cycle for FSQRT
I 259 KB Verilog −→ 35 KB RAC −→ 42 KB ACL2
I C Model and RTL produce identical remainders and

quotients at each iteration
I SLEC execution time linear in operand width, 87 minutes

for DP FSQRT
I ACL2 proof script consists of 1600 lemmas
I Level of effort (modeling + verification): 3 man-months

14/15

REFERENCES

The RTL library and the RAC parser and translator reside in
the community books directory: of the ACL2 repository
(http://www.cs.utexas.edu/users/moore/acl2):

I books/rtl/README

I books/projects/rac/README

Documentation:

I Russinoff, “Formal Verification of Floating-Point Hardware
Designs: A Mathematical Approach”, Springer, 2018.

15/15

