
The State of Sail

Alasdair Armstrong

Joint work with: Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn

E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French,

Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, Peter Sewell

13th September, 2019

This work was partially supported by EPSRC grant EP/K008528/1 (REMS), and an ARM iCASE award.
This project has received funding from the European Research Council (ERC) under the European Union's Horizon
2020 research and innovation programme (grant agreement No 789108). Approved for public release; distribution
is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8650-18-C-7809 ("CIFV"). The views, opinions, and/or
�ndings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted
as representing the o�cial views or policies of the Department of Defense or the U.S. Government.

1 / 28

Sail ISA description language

Imperative �rst-order language for ISA speci�cation

Lightweight dependent types for bitvectors (checked using Z3)

function get_width() -> {|32, 64|} = ...

function example(xs: bits(16)) -> unit = {

let ’width = get_width();

let ys: bits(’width) = zero_extend(xs);

if length(ys) == 32 then {

// __prove is special compile-time assert

__prove(constraint(’width == 32)) // always true

}

}

2 / 28

Sail semantics

Very simple imperative semantics (no aliasing, pointers, etc)

• Very amenable to static analysis

Behavior of memory actions left to external memory model

• Can plug in separate semantics for relaxed memory concurrency

3 / 28

Example RISC-V instruction

Example instruction in Sail:

function clause execute (ITYPE (imm, rs1, rd, op)) = {

let rs1_val = X(rs1);

let immext : xlenbits = EXTS(imm);

let result : xlenbits = match op {

RISCV_ADDI => rs1_val + immext,

RISCV_SLTI => EXTZ(rs1_val <_s immext),

RISCV_SLTIU => EXTZ(rs1_val <_u immext),

RISCV_ANDI => rs1_val & immext,

RISCV_ORI => rs1_val | immext,

RISCV_XORI => rs1_val ^ immext

};

X(rd) = result;

RETIRE_SUCCESS

}

4 / 28

Bi-directional mappings for assembly and encode/decode

mapping encdec_iop : iop <-> bits(3) = {

RISCV_ADDI <-> 0b000,

RISCV_SLTI <-> 0b010,

RISCV_SLTIU <-> 0b011,

RISCV_ANDI <-> 0b111,

RISCV_ORI <-> 0b110,

RISCV_XORI <-> 0b100

}

mapping clause encdec = ITYPE(imm, rs1, rd, op)

<-> imm @ rs1 @ encdec_iop(op) @ rd @ 0b0010011

mapping clause assembly = ITYPE(imm, rs1, rd, op)

<-> itype_mnemonic(op) ^ spc() ^ reg_name(rd) ^ sep() ^ reg_name(

rs1) ^ sep() ^ hex_bits_12(imm)

5 / 28

Sail Overview

6 / 28

Sail Overview

6 / 28

Sail ISA Models

Model Source KLoS KIPS Provers Boots

ARMv8.5-A ASL 125 200 All Linux, Hafnium
MIPS hand 2 800 All FreeBSD
CHERI MIPS hand +2 400 All FreeBSD, CheriBSD
RISC-V hand 5 150 All †
CHERI RISC-V hand +2 All

CHERI ARM ASL lots
ARMv8 (small) hand 6
IBM POWER fragment hand 6
x86 fragment hand 2

† FreeBSD, Linux, FreeRTOS, Hafnium

7 / 28

RISC-V

Open ISA, developed by broad industrial and academic community

Test system features by booting seL4, FreeBSD, Linux, and others

Validated against RISC-V conformance tests, and via trace

comparison with Spike simulator

Led to contributions to original ISA speci�cation, e.g.

• description of page-faults in page-table walks

• ambiguities in the speci�cation of interrupt delegation

• bug �xes in Spike simulator

Involvement in the RISC-V formal working group

Integration with RMEM operational concurrency tool

• Used with the 6874 litmus tests for the RISC-V memory model

8 / 28

ARMv8-A

Described in ARM's ASL executable pseudocode language

Used within ARM for documentation, hardware validation, and

architecture design

Authoritative, vendor-supplied semantics

Automatic translation from ASL into Sail via asl-to-sail tool

Features: Floating-point, address translation & page-table walks,

synchronous exceptions, hypervisor mode, crypto instructions, vector

instructions (NEON and SVE), memory partitioning and monitoring,

pointer authentication, etc. . .

Such a complete vendor-supplied architecture description not previously

publicly available for formal reasoning

9 / 28

ARMv8-A Model Validation

ARM's Architecture Validation Suite (AVS)

Internal test suite within ARM

Sail v8.3 model passed 99.85% of 15 400 tests as compared with

ARM ASL

Linux booting

Useful sanity test for system features

Only covers about 25% of the 64-bit model even

without vector instructions!

Also experimented with running Linux under Hafnium hypervisor

10 / 28

ARMv8.5-A

64-bit part of v8.5 speci�cation contains:

66558 LOS for all 64-bit instructions

3825 Sail functions

561 registers

981 instructions (each may be multiple assembly mnemonics)

When evaluated each instruction performs around 800 calls to auxiliary

functions, and 500 primitives

Key question: Is such a large speci�cation actually useable for veri�cation

and proof?

11 / 28

Example Proof for ARMv8-A

Address translation: Most complex part of ARMv8 model!

9000 lines of speci�cation required

Page table walk: Over 500 LOS excluding helper functions

• . . . and there are lots of page table helper functions

Involves iteration, variable-length bitvectors, memory e�ects,

nondeterminism, . . .

12 / 28

Example Proof for ARMv8-A

We de�ned a simple characterisation of address translation suitable for

reasoning about non-system code

About 500 lines of Isabelle total

Theorem

Simpli�ed address translation is equivalent to full ARMv8 address

translation under certain useful assumptions

user mode, no virtualisation, valid translation tables, hardware updating

of translation table �ags

Uncovered a few small bugs in the ASL speci�cation

13 / 28

Bounded model-checking for Sail

Interactive proof is great, but can we have something more automated?

Translate Sail source into SMT problems

Allows verifying properties of Sail functions

For example, used to verify capability-manipulation properties in

CHERI-RISCV

$property

function prop_set_bounds_exact

(c : Capability, base : bits(64), top : bits(65)) -> bool = {

let (exact, c’) = setCapBounds(c, base, top’);

let (base’, top’) = getCapBounds(c’);

~(exact) | (unsigned(base) >= unsigned(top))

| (base’ == unsigned(base) & top’ == unsigned(top))

}

14 / 28

Bounded model-checking for Sail

Similar to existing tools such as CBMC

15 / 28

Now rather than just model-checking properties of Sail functions, we

want to analyse litmus tests for ARMv8, RISC-V (and others)

Example (observable speculative execution):

Test MP+dmb+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

MP+dmb+ctrl ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] CMP R0,R0

DMB BNE LC00

MOV R1,#1 LC00:

STR R1,[R3] LDR R1,[R2]

Initial state: 0:R2=x, 0:R3=y, 1:R2=x

, 1:R3=y

Allowed: 1:R0=1, 1:R1=0

16 / 28

Axiomatic concurrency semantics for Sail

Concurrency semantics not in Sail ISA description - that only covers

sequential intra-instruction behaviour

Expressed in two ways:

• operational: abstract-microarchitectural abstract machine describing

allowed speculation etc.

• axiomatic: predicate on candidate complete executions (graphs of

memory events, rf relation, etc.)

Both approaches made executable as test oracle (to compute all

allowed behaviours of litmus tests) by:

• Lem operational semantics, integrated with Sail ISA semantics

(albeit not full ARMv8.5-A yet) in RMEM tool

• Herd, Memalloy, ... - but these have hardwired and limited ISA

semantics support

17 / 28

Axiomatic concurrency semantics for Sail

Problem: how can we compute model-allowed behaviour w.r.t.

axiomatic models wrt general (Sail) ISA semantics? And how can

we do that in the presence of self-modifying code or other

interesting architectural features?

Idea: Use the above infrastructure for Sail→SMT to build a tool

similar to herd

Inputs:

• A litmus �le

• A Sail model for the instruction set used in the litmus �le

• An axiomatic memory model speci�ed in the cat language (used by

Herd)

Related work: Dartagnan, Cerberus-BMC

18 / 28

Axiomatic concurrency semantics for Sail

0:X1=x; 0:X3=y;

1:X1=y; 1:X3=x;

}

P0 | P1 ;

LDR W0,[X1] | LDR W0,[X1] ;

MOV W2,#1 | MOV W2,#1 ;

STR W2,[X3] | STR W2,[X3] ;

exists

(0:X0=1 /\ 1:X0=1)

Load-bu�ering litmus test for ARMv8-A

19 / 28

Axiomatic concurrency semantics for Sail

20 / 28

We unfold the Sail de�nitions for the each instruction in the litmus

test

• Sail speci�cation also speci�es instruction syntax, so the litmus �le

parser is dynamically derived from the speci�cation

Larger tests can generate SSA graphs with 500 000+ basic blocks

Dependent on partial evaluation and symbolic execution to reduce

those graphs

• Most values are concrete, but values returned by memory reads can

be symbolic

Hard to guarantee alignment and other architectureal restrictions for

symbolic addresses (quite commonly used in litmus �les)

Large SSA graph usually reduced to about 20-100 lines of SMT per

thread

21 / 28

Axiomatic concurrency semantics for Sail

So far we have tested on approximately 100 litmus tests for ARMv8

using a simpli�ed model

More engineering work is required to support the full ASL derived

spec

Get the same result as existing RMEM operational model on these

tests

Most execution time taken up by this simpli�cation process, not by

the SMT solver

22 / 28

Axiomatic concurrency semantics for Sail

With such complete semantics we can look at features non

considered by other tools

Often very important for systems code (operating systems)

One interesting aspect of the architecture we have been exploring

with this tool is the relaxed-memory behavior of self-modifying code

Relevant for JIT compilers (e.g. Javascript engines!), dynamic

linkers, etc

Joint work with: Ben Simner, Shaked Flur, Christopher Pulte, Jean

Pichin-Pharabod, Luc Maranget, Peter Sewell

23 / 28

Self-modifying code

Store can overwrite B l0 with B l1 at f

But it might not have taken e�ect by the time we execute f, so

X0 = 1 is allowed

X0 = 2 is also allowed

24 / 28

Self-modifying code

(Output graph drawing still very much work-in-progress)

25 / 28

Self-modifying code

Not just a single barrier!

. . . need DC (data) and IC (instruction) cache maintenance

instructions

. . . and both DSB and ISB barriers

Permitted behavior is very weak!

26 / 28

Conclusion

Rigorous semantics for real production architectures

Usable for interactive proof and complete with system features

Can build a tool capable of exploring relaxed memory behaviors of

these speci�cations using axiomatic descriptions of memory models

Many other exciting projects enabled by such ISA speci�cations

27 / 28

Sail: https://github.com/rems-project/sail

ARMv8.5-A: https://github.com/rems-project/sail-arm

RISC-V: https://github.com/rems-project/sail-riscv

28 / 28

https://github.com/rems-project/sail
https://github.com/rems-project/sail-arm
https://github.com/rems-project/sail-riscv

