x86-64 Instruction Decoder

Andrew Miranti @ Sandeep Dasgupta ® Grigore Rosu
University of lllinois at Urbana Champaign
13 September 2019 @ SplISA'19

Prior Work: x86-64 Semantics [PLDI'g]

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 [SA

github.com/kframework/X86-64-semantics

Scope of Work (3155 / 3736)

= Supported (3155) = Unsupported (581)

Deprecated
(336)

Concurrency
& System
(210)

Crypto (35)

Based on: K-Framework |Rosu et al. 2010]

Language semantics engineering framework (kframework.org)

W K
Framework

— Inferpreter

} for free

> program verifier

—— symbolic executor

—— equivalence checker

Approach Overview

Approach Overview

AN

Strata BVL*
semantics

60% in
scope

N

* BVL: Bit-vector logic

Approach Overview

\ Modeling \
Strata BVL* Unsupported
, artifacts augmented
semantics E.- | 2
—
. = corrected
607 in Validating semantics
scope semantics of
\ instruction-variants \

* BVL: Bit-vector logic

Approach Overview

Modeling
Strata BVL*\ Unsupported \ - Formula . \
artifacts augmented simplification

semantics ﬂ.- ’ & simplified
0% in = corrected semantics

Validafing . .
scope semantics of semantics count reduction

\ instruction-variants \ \

* BVL: Bit-vector logic
** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Modeling
Strata BVL*\ Unsupported N | formula N
artifacts augmented simplification

semantics ’l-_ ’ & simplified
60% i = corrected semantics

Validafing . .
scope semantics of semantics count reduction

\ instruction-variants \ \

BVL = K translator *

* BVL: Bit-vector logic
** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

AN

Strata BVL*
semantics

60% in
scope

N

Modeling
Unsupported \
artifacts augmented
[
I .
v I'd_’r' corrected
anaadiing semantics

semantics of
instruction-variants

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

AN

Formula
simplification **

%

count reduction

BVL = K translator *

AN

simplified
semantics

N

Validation

SMT
Formula

1
1
v

i

SMT
Formula

10

Approach Overview

Modeling
Strata BVL*\ Unsupported \ ~ Formula N \
artifacts augmented simplification

semantics ’l-_ ’ & simplified
60% i = corrected semantics

Validafing . .
scope semantics of semantics count reduction

\ instruction-variants \ \

BVL = K translator *

Intel \
informal
spec ﬂ.-_’
40% in Manually translation
\ scope

* BVL: Bit-vector logic
** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

[g
Modeling —_
Strata BVL*\ Unsupported N | formula N
artifacts augmented simplification

manti . regs
semantics ' & E simplified 3.5
- i
. h manti man-months
50% in corrected semantics

Validafing . .
scope semantics of semantics count reduction

\ instruction-variants \ \)

BVL = K translator *

Intel \
informal
spec S 2.5
l-= = man-months
40% in Manually translation (~5200 rules)
_ scope

* BVL: Bit-vector logic

12

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Validation of Semantics

Comparing with
hardware

Instruction Level Testing
(7000+ inputs states)

//’
12+ Bugs reported

 IntelManual
« Strata formulas

Program Level Testing
(GCC-c forture fests)

Comparing with
Stoke

Comparing SMT
formula

/ ‘
40+ Bugs reported
In Stoke

1/)

~ A Few Reported Bugs

ﬁ& Infel Manual Vol. 2: March 2018

VPSRAVD (VEX.128 version)
COUNT_O € SRC2[31:0]
—{*Repeat Each COUNT i for the 2nd through 4th dwords of SRCZ2*)
COUNT_3 € SRC2[100: 96]
DEST[31:0] € SignExtend(SRC1[31:0] >> COUNT_0);

(* Repeat shift operation for 2nd through 4th dwords *)
DEST[127:96] € SignExtend(SRC1[127:96] >> COUNT_3);
DEST[MAXVL-1:128] € O;

Intel Manual Vol. 2: May 2019

VPSRAVD (VEX.128 version)
COUNT_O € SRCZ2[31 : 0]

(* Reneat Each COUNT i for the 2nd through 4th dwords of SRCZ2*)
COUNT_3 € SRCZ2[127:96/;
DEST[31:0] € SignExtend(SRC1[31:0] >> COUNT_Q);

(* Repeat shift operation for 2nd through 4th dwords *)
DEST[127:96] € SignExtend(SRC1[127:96] >> COUNT_3);
DEST[MAXVL-1:128] € O;

14

~ A Few Reported Bugs

ﬁ Stoke Implementation May 2018

VCUTSIZSD (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] €« Convert_Integer_To_Double_Precision_Floating_Point(SRCZ[63:0]);
ELSE

DEST[63:0] < Convert_Integer_To_Double_Precision_Floating_Point(SRCZ[31:0]);
El:

| DesT[12764] < (Unmodified) |

Intel Manual Vol. 2: May 2019

VCVTSIZ2SD (VEX.128 encoded version)
IF 64-Bit Mode And OperandSize = 64
THEN

DEST[63:0] € Convert_Integer_To_Double_Precision_Floating_Point(SRC2[63:0]);
ELSE

DEST[63:0] «Convert_Integer_To_Double_Precision_Floating_Point(SRC2[31:0]);
FI;

DEST[127:64] €SRC1[127:64]
15

~ A Few Reported Bugs

ﬁﬁ Stoke Implementation May 2018

PSLLD (with 64-bit operand)
IF (COUNT = 31)
THEN
DEST[64:0] « 0000000000000000H;
ELSE

DEST[31:0] < ZeroExtend(DEST[31:0] << COUNT [31:01):
DEST[63:32] «— ZeroExtend(DEST[63:32] << COUNT [63:32]);

Fl;

Infel Manual Vol. 2: May 2019

PSLLD (with 64-bit operand)

IF (COUNT = 31)

THEN
DEST[64:0] «— 0000000000000000H;

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] « ZeroExtend(DEST[63:32] << COUNT);

Fl;

16

A Few Potential Applications

O Program verification

4 Translation validation of compiler optimization

1 Security vulnerabillity tracking

Formalizing a decoder: Motivation

d The original x86 semantics accepted assembly code

* Practical concerns - unlikely to be available unless source is

4 In which case, why not use source?
= Assuming, of course, we trust the compiler

= What if source code is unavailable?

d Could use an off-the-shelf disassembler as a pre-processor
" Requires trusting the correctness of this disassembler
= Potential compatibility issues

* Loses potential for tighter integration with semantics in the future

On the other hand... 18

Enter XED

A In principle, the definitive source of x86 instruction encodings is

the x86 manual

= But the sheer size of the instruction set eliminates the possibility of encoding

these by hand
4 Instead, we chose to port Intel’'s XED™'s disassembler to the K
Framework
A Gives us to XED's datafiles, a source for the decoding
algorithm, and a standard to test against

A Disadvantage: Trusting the correctness of XED

Intro to x86 Instruction Encoding

(optional)'-

N

bytes or none?

3 2 0

Mod

Eegf
Opcode

RM

Scale

Index

Base

r additional information.

AVX)".
3. Some rare instructions can take an 8B immediate or 8B displacement.

instruction | ppcode ModR/M SIB Displacement Immediate
Prefixes of 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
1 byte each opcode (if required) (if required) displacement data of
of1,2,or4 1,2, ord

bytes or none?

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section
2.2.1, "REX Prefixes"
2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®

Figure 2-1.

* Picture is borrowed from Vol.2 "Intel 64 and IA-32 Architectures, Software Developer's Manual"

Intel 64 and IA-32 Architectures Instruction Format

20

A Decoding Algorithm

a N

Scan for prefixes. Legacy
prefixes set flag

variables. Repeat until
you read a byte that is

not a legacy prefix.

.

-~

Determine the effective
address and operand
sizes

~

.

/If this byte was 0x62, Ox8F,\
OxC4, or OxC5 then
branch to handle these
special cases (vector
extension instructions) -

\We’ll skip these.

/
4 N

If thereis a SIB byte, read
it and extract the Index,
Base, Scale bifs.

~

Read opcode bytesand
determineif there is a
MODRM byte.

. /

.

~

/

~

If there is, read it and
extract the MOD, REG,
RM bits to determineif a
SIB byte exists. Else skip

.

~

/

A Decoding Algorithm: Cont. ...

Q At this point, we have enough informatfion extracted to
determine the precise instruction variant (operation and
operands) - K makes this easy! Just match on the

relevant properties

d We now know if we have a displacement and
Immediate(s) from the chosen variant - read and exfract

these.

d Decoding complete! Output in an appropriate form.

An example (generated) K rule

rule <IMMO> => 1 </IMMO>

<k> DynamicDecodelInstruction => SIMM8 ~> ScanForDisp ~>
ScanForImmediate ~> GPR8 B ~> OUTREGTOREGO ... </k>
<ICLASS> => SUB </ICLASS>

<INUM> => 166 </INUM>

<CATEGORY> => "CATEGORY BINARY" </CATEGORY>

<INAME> => "sub" </INAME>

<ATTRIBUTES> => ListItem(A BYTEOP) </ATTRIBUTES>
<OPERANDS> => /* Removed for length */ </OPERANDS>
<dynamicDecoderBuffer> 128 :Ints </dynamicDecoderBuffer>

<MOD> 3 </MOD>
<REG> 5 </REG>
<VEXVALID> 0 </VEXVALID>

Evaluation in isolation

The decoder has been tested in isolation by comparison with
XED.

» |t successfully disassembled elf_reader, our frusted C loader

program

« [tsuccesstully disassembled all instructions supported by the

execution semantics

After validation, we started infegration with the semantics.

Integration with Semantics: Challenges

d Rewrite of program loading, addition of instruction fetch & decode
steps

d Designed for different backend implementations of K — needed to
port Semantics

d Semantics memory model did not support an efficient way to load a
large text segmentinto memory.

* Improvesperformance in K framework compared to long list
structures

A XED's implementation of AT&T syntax was inconsistent with semantics
(and gas’ implementation)

d Immediate length inconsistencies due to a bug in the semantics.

Evaluation in combination w/ semantics

The decoder has been tested in isolation and in combination

with the semantics.
« |tsuccessfully executed 468 of 482 selected gcc-forture tests

« Compiled with miniature versions of stdlib for

performance and compatibility reasons

[.Limitations

K does not support ‘parsing’ binaries — thus still requires o
frusted external binary reader to transform an elf

executable into a format K can read

dThe semantics offers littfle system call support; Although the

decoder can decode them

A Dynamic linking not supported — detected at load time

Future Work

d Leverage decoder to simplify semantics

d Add modelling of OS interaction (e.g. syscall instruction)
= Already support decoding these instructions, but can’t execute
them

dPerformance optimizations

= Reduction in memory usage of particular importance
= Work on porting semantics to future K backends

d Reducing trusted code base - in particular, moving the
Implementation of reading elf file segments to K Framework
as well

d Support for symbolic execufion

Thank You

