
x86-64 Instruction Decoder

Andrew Miranti ● Sandeep Dasgupta ● Grigore Rosu
University of Illinois at Urbana Champaign

13 September 2019 @ SpISA'19

1

Prior Work: x86-64 Semantics [PLDI’19]

We defined the most complete and thoroughly tested
formal semantics of user-level x86-64 ISA

github.com/kframework/X86-64-semantics

Scope of Work (3155 / 3736)

3

• General

• FC16

• FMA

• AVX2

• AVX

• SSE

Supported

(3155)

4

Language semantics engineering framework (kframework.org)

K
Framework

Syntax

Semantics

interpreter

program verifier

symbolic executor

·
·
·

·
·
·

for free

equivalence checker

Based on: K-Framework [Rosu et al. 2010]

5

Approach Overview

6

* BVL: Bit-vector logic

Approach Overview

Strata BVL*
semantics

60% in

scope

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

7

* BVL: Bit-vector logic

Approach Overview

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

8

Formula
simplification **

count reduction

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

9

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

10

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Validation

SMT

Formula

SMT

Formula

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

11

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Manually translation

Intel
informal

spec

40% in

scope

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

12

Formula
simplification **

count reduction

BVL → K translator

* BVL: Bit-vector logic

** 30+ simplification rules. BVL formula of shrxl with 8971 terms simplified to 7 terms

Approach Overview

Manually translation

Intel
informal

spec

40% in

scope

semantics
in K

Strata BVL*
semantics

60% in

scope

augmented
&

corrected

semantics

simplified
semantics

3.5
man-months

2.5
man-months

(~5200 rules)

Modeling
Unsupported

artifacts

Validating
semantics of

instruction-variants

Validation of Semantics

13

Comparing with
hardware

Instruction Level Testing

(7000+ inputs states)

Program Level Testing

(GCC-c torture tests)

Comparing with
Stoke

Comparing SMT
formula

12+ Bugs reported
• Intel Manual
• Strata formulas

40+ Bugs reported
In Stoke

A Few Reported Bugs

14

Intel Manual Vol. 2: May 2019

Intel Manual Vol. 2: March 2018

A Few Reported Bugs

15

Stoke Implementation May 2018

Intel Manual Vol. 2: May 2019

A Few Reported Bugs

16

Intel Manual Vol. 2: May 2019

Stoke Implementation May 2018

[31:0]);
[63:32]);

A Few Potential Applications

❑ Program verification

❑ Translation validation of compiler optimization

❑ Security vulnerability tracking

17

18

Formalizing a decoder: Motivation
❑ The original x86 semantics accepted assembly code

▪ Practical concerns - unlikely to be available unless source is

❑ In which case, why not use source?

▪ Assuming, of course, we trust the compiler

▪ What if source code is unavailable?

❑ Could use an off-the-shelf disassembler as a pre-processor

▪ Requires trusting the correctness of this disassembler

▪ Potential compatibility issues

▪ Loses potential for tighter integration with semantics in the future

▪ On the other hand...

19

Enter XED
❑ In principle, the definitive source of x86 instruction encodings is

the x86 manual

▪ But the sheer size of the instruction set eliminates the possibility of encoding

these by hand

❑ Instead, we chose to port Intel’s XED™’s disassembler to the K

Framework

❑ Gives us to XED’s datafiles, a source for the decoding

algorithm, and a standard to test against

❑ Disadvantage: Trusting the correctness of XED

20

Intro to x86 Instruction Encoding

* Picture is borrowed from Vol.2 "Intel 64 and IA-32 Architectures, Software Developer's Manual"

21

A Decoding Algorithm

Scan for prefixes. Legacy
prefixes set flag
variables. Repeat until
you read a byte that is
not a legacy prefix.

If this byte was 0x62, 0x8F,
0xC4, or 0xC5 then
branch to handle these
special cases (vector
extension instructions) -
We’ll skip these.

Read opcode bytes and
determine if there is a
MODRM byte.

If there is, read it and
extract the MOD, REG,
RM bits to determine if a
SIB byte exists. Else skip

If there is a SIB byte, read
it and extract the Index,
Base, Scale bits.

Determine the effective
address and operand
sizes

22

A Decoding Algorithm: Cont. …
❑ At this point, we have enough information extracted to

determine the precise instruction variant (operation and

operands) - K makes this easy! Just match on the

relevant properties

❑ We now know if we have a displacement and

immediate(s) from the chosen variant - read and extract

these.

❑ Decoding complete! Output in an appropriate form.

23

An example (generated) K rule

rule <IMM0> _ => 1 </IMM0>

<k> DynamicDecodeInstruction => SIMM8 ~> ScanForDisp ~>

ScanForImmediate ~> GPR8_B ~> OUTREGToREG0 ... </k>

<ICLASS> _ => SUB </ICLASS>

<INUM> _ => 166 </INUM>

<CATEGORY> _ => "CATEGORY_BINARY" </CATEGORY>

<INAME> _ => "sub" </INAME>

<ATTRIBUTES> _ => ListItem(A_BYTEOP) </ATTRIBUTES>

<OPERANDS> _ => /* Removed for length */ </OPERANDS>

<dynamicDecoderBuffer> 128 _:Ints </dynamicDecoderBuffer>

<MOD> 3 </MOD>

<REG> 5 </REG>

<VEXVALID> 0 </VEXVALID>

24

Evaluation in isolation

The decoder has been tested in isolation by comparison with

XED.

• It successfully disassembled elf_reader, our trusted C loader

program

• It successfully disassembled all instructions supported by the

execution semantics

After validation, we started integration with the semantics.

25

Integration with Semantics: Challenges

❑ Rewrite of program loading, addition of instruction fetch & decode

steps

❑ Designed for different backend implementations of K – needed to

port Semantics

❑ Semantics memory model did not support an efficient way to load a
large text segment into memory.

• Improves performance in K framework compared to long list
structures

❑ XED’s implementation of AT&T syntax was inconsistent with semantics
(and gas’ implementation)

❑ Immediate length inconsistencies due to a bug in the semantics.

26

Evaluation in combination w/ semantics

The decoder has been tested in isolation and in combination

with the semantics.

• It successfully executed 468 of 482 selected gcc-torture tests

• Compiled with miniature versions of stdlib for

performance and compatibility reasons

27

Limitations

❑K does not support 'parsing' binaries – thus still requires a

trusted external binary reader to transform an elf

executable into a format K can read

❑The semantics offers little system call support; Although the

decoder can decode them

❑Dynamic linking not supported – detected at load time

28

Future Work

❑ Leverage decoder to simplify semantics

❑ Add modelling of OS interaction (e.g. syscall instruction)

▪ Already support decoding these instructions, but can’t execute
them

❑Performance optimizations

▪ Reduction in memory usage of particular importance

▪ Work on porting semantics to future K backends

❑ Reducing trusted code base - in particular, moving the

implementation of reading elf file segments to K Framework
as well

❑ Support for symbolic execution

Thank You

29

