
Quameleon: A Lifter and Intermediate
Language for Binary Analysis

Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac,
Tristan Duckworth, Michael J. Carson, Geoffrey C. Hulette,

Christopher B. Harrison
September 13, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-NA0003525. SAND No. SAND2019-10608 C

About Us

About me: Ph.D. candidate at the
University of Oregon, summer
intern at Sandia National Labs

The other six authors work at
Sandia with some portion of their
time spent on Quameleon

Digital
Foundations
& Maths

2

About Us

About me: Ph.D. candidate at the
University of Oregon, summer
intern at Sandia National Labs
The other six authors work at
Sandia with some portion of their
time spent on Quameleon

Digital
Foundations
& Maths

2

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems

Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly

Original authors or source code may not be available
Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available

Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely

Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted

We need lifters (decompilers) and verification tools for weird
ISAs

3

Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely
Current tools do not support our architectures nor do they
seem easily adapted
We need lifters (decompilers) and verification tools for weird
ISAs

3

History

Prior work consisted of one-off Haskell programs for a single
ISA and single binary

Successful but not scalable
Rewrite started as a summer project with M6800
Has since expanded to a small team working on Quameleon
(the other six authors)

4

History

Prior work consisted of one-off Haskell programs for a single
ISA and single binary
Successful but not scalable

Rewrite started as a summer project with M6800
Has since expanded to a small team working on Quameleon
(the other six authors)

4

History

Prior work consisted of one-off Haskell programs for a single
ISA and single binary
Successful but not scalable
Rewrite started as a summer project with M6800

Has since expanded to a small team working on Quameleon
(the other six authors)

4

History

Prior work consisted of one-off Haskell programs for a single
ISA and single binary
Successful but not scalable
Rewrite started as a summer project with M6800
Has since expanded to a small team working on Quameleon
(the other six authors)

4

History

Prior work consisted of one-off Haskell programs for a single
ISA and single binary
Successful but not scalable
Rewrite started as a summer project with M6800
Has since expanded to a small team working on Quameleon
(the other six authors)

4

Motivation

Need to analyze binaries on proprietary ISAs

ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE-754 floats, no 8-bit bytes

Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs
We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]

5

Motivation

Need to analyze binaries on proprietary ISAs
ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE-754 floats, no 8-bit bytes

Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs
We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]

5

Motivation

Need to analyze binaries on proprietary ISAs
ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE-754 floats, no 8-bit bytes

Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]

5

Motivation

Need to analyze binaries on proprietary ISAs
ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE-754 floats, no 8-bit bytes

Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs
We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]

5

Motivation

Need to analyze binaries on proprietary ISAs
ISAs not supported by existing tools
No machine-readable specification
Bad old days: No IEEE-754 floats, no 8-bit bytes

Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs
We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]

5

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries

Lift binaries into a simple IL amenable to multiple analysis
backends
Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior
Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write
Balance this with Haskell as a macro-assembler for QIL

6

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries
Lift binaries into a simple IL amenable to multiple analysis
backends

Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior
Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write
Balance this with Haskell as a macro-assembler for QIL

6

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries
Lift binaries into a simple IL amenable to multiple analysis
backends
Closer to LLVM IR in spirit

Contrast with Ghidra [1], angr [2]: we know intended behavior
Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write
Balance this with Haskell as a macro-assembler for QIL

6

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries
Lift binaries into a simple IL amenable to multiple analysis
backends
Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior

Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write
Balance this with Haskell as a macro-assembler for QIL

6

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries
Lift binaries into a simple IL amenable to multiple analysis
backends
Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior
Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write

Balance this with Haskell as a macro-assembler for QIL

6

Design Goals of the Quameleon Intermediate
Language (QIL)

Sound analysis of binaries
Lift binaries into a simple IL amenable to multiple analysis
backends
Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior
Size of QIL (∼ 60 instructions) means easy to manipulate,
harder to write
Balance this with Haskell as a macro-assembler for QIL

6

Architectural Overview

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

QIL = Quameleon Intermediate Language

7

Architectural Overview

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

QIL = Quameleon Intermediate Language

7

QIL Types

Values: bit vectors of arbitrary width
Locations: where values can be written
Blocks: Single-entry, multiple exit
Labels: Start of a block
RAM: Mutable cells of Locations indexed by Values
JoinPoints: Continuation within a block
I/O: Like volatile variables

8

QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point

Within a block
Variables are static single assignment
No loops

9

QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point

Within a block
Variables are static single assignment
No loops

9

Haskell DSL

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

10

Sample M6800

LDA A #14 ; A <- 0xE
AND A $40 ; A <- A & [0x40]

We want to match the manual closely

11

…and Its Corresponding Semantics

AND r l -> do
ra <- getRegVal r
op <- loc8ToVal l -- Loc. of 8 bits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

12

…and Its Corresponding QIL

1 code_ptr_size: S16
2 alloc_part: {
3 &1 := alloc[S8] // Reg A
4 &2 := alloc[S8] // Reg B
5 &3 := alloc[S16] // Reg X
6 &4 := alloc[S16] // Reg PC
7 &5 := alloc[S16] // Reg SP
8 &6 := alloc[S1] // Carry Flag
9 &7 := alloc[S1] // Overflow Flag

10 &8 := alloc[S1] // Zero Flag
11 &9 := alloc[S1] // Negative Flag
12 &10 := alloc[S1] // Interrupt Flag
13 &11 := alloc[S1] // HalfCarry Flag
14 MEM(1) := buildMemory[S16 S8]
15 }

13

…and Its Corresponding QIL (cont.)
16 code_part: {
17 @1 := block { }
18 @2 := registered_block "AND A (DIR8 0x40)" 2 {
19 %1 := readLoc[S8] &1 // read Register A
20 &12 := MEM(1)[S16].BV[S8](40)
21 %2 := readLoc[S8] &12
22 %3 := AndBit[S8] %1 %2
23 writeLoc[S8] &1 %3 // set Register A
24 branch @1
25 }
26 @3 := registered_block "LDA A (IMM8 14)" 0 {
27 writeLoc[S8] &1 BV[S8](e) // set Register A
28 %1 := IsZero[S8] BV[S8](e)
29 writeLoc[S1] &8 %1 // set Zero Flag
30 branch @2
31 }
32 @4 := block { branch @3 }
33 }
34 entry_point: @4

14

Backends

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

15

Current Backends

1. Emulator

2. Bridge to angr
angr is a symbolic execution engine primarily for cybersecurity
Originally planned to translate from QIL to angr’s IR, VEX
VEX has byte-centric memory model, different functions for
add32, add16, etc.
We needed addition of 96 bit integers
Easier to treat QIL as an ISA that angr can execute!

16

Current Backends

1. Emulator
2. Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity

Originally planned to translate from QIL to angr’s IR, VEX
VEX has byte-centric memory model, different functions for
add32, add16, etc.
We needed addition of 96 bit integers
Easier to treat QIL as an ISA that angr can execute!

16

Current Backends

1. Emulator
2. Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Originally planned to translate from QIL to angr’s IR, VEX

VEX has byte-centric memory model, different functions for
add32, add16, etc.
We needed addition of 96 bit integers
Easier to treat QIL as an ISA that angr can execute!

16

Current Backends

1. Emulator
2. Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Originally planned to translate from QIL to angr’s IR, VEX
VEX has byte-centric memory model, different functions for
add32, add16, etc.

We needed addition of 96 bit integers
Easier to treat QIL as an ISA that angr can execute!

16

Current Backends

1. Emulator
2. Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Originally planned to translate from QIL to angr’s IR, VEX
VEX has byte-centric memory model, different functions for
add32, add16, etc.
We needed addition of 96 bit integers

Easier to treat QIL as an ISA that angr can execute!

16

Current Backends

1. Emulator
2. Bridge to angr

angr is a symbolic execution engine primarily for cybersecurity
Originally planned to translate from QIL to angr’s IR, VEX
VEX has byte-centric memory model, different functions for
add32, add16, etc.
We needed addition of 96 bit integers
Easier to treat QIL as an ISA that angr can execute!

16

Optimizations

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

17

QIL-QIL Optimizations

The goal is to facilitate analysis

Constant folding
Branch to known value
Dead code elimination
Inlining with simple heuristics
e.g. inline everywhere
Defunctionalization

Reduce
code size

Simplify
CFG

18

QIL-QIL Optimizations

The goal is to facilitate analysis
Constant folding
Branch to known value
Dead code elimination

Inlining with simple heuristics
e.g. inline everywhere
Defunctionalization

Reduce
code size

Simplify
CFG

18

QIL-QIL Optimizations

The goal is to facilitate analysis
Constant folding
Branch to known value
Dead code elimination
Inlining with simple heuristics
e.g. inline everywhere
Defunctionalization

Reduce
code size

Simplify
CFG

18

Future Work

Jump to a Location in memory
Use abstract interpretation to find Locations code could jump

Formalize QIL and QIL-QIL transformations in Coq
Loops with statically-known bounds in blocks

Don’t need the full sophistication of more richly-featured ILs
Plan to open source as much as possible

19

Future Work

Jump to a Location in memory
Use abstract interpretation to find Locations code could jump

Formalize QIL and QIL-QIL transformations in Coq

Loops with statically-known bounds in blocks
Don’t need the full sophistication of more richly-featured ILs

Plan to open source as much as possible

19

Future Work

Jump to a Location in memory
Use abstract interpretation to find Locations code could jump

Formalize QIL and QIL-QIL transformations in Coq
Loops with statically-known bounds in blocks

Don’t need the full sophistication of more richly-featured ILs

Plan to open source as much as possible

19

Future Work

Jump to a Location in memory
Use abstract interpretation to find Locations code could jump

Formalize QIL and QIL-QIL transformations in Coq
Loops with statically-known bounds in blocks

Don’t need the full sophistication of more richly-featured ILs
Plan to open source as much as possible

19

Conclusion

Quameleon is a tool for sound binary analysis in its early
stages
QIL is a typed, RISC-like IL to specify legacy architectures
Leverage machine readability with the simplicity of QIL
Leverage features of Haskell as an assembler for QIL
Haskell DSL matches the structure of ISA specs
Prefer the flexibility of few assumptions over efficiency of
powerful model

20

References I

[1] National Security Agency Research Directorate.
Ghidra: A software reverse engineering (sre) framework, 2019.
Available at https://www.ghidra-sre.org.

[2] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,
Dutcher, A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna,
G.
SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy (SP) (May 2016), pp. 138–157.

[3] Trail of Bits.
An extra bit of analysis for clemency.
Available at https://blog.trailofbits.com/2017/07/30/
an-extra-bit-of-analysis-for-clemency/.

21

https://www.ghidra-sre.org
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/

	Appendix

