Sandia
Exceptional service in the national interest @ National

Laboratories

Quameleon: A Lifter and Intermediate
Language for Binary Analysis

Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac,
Tristan Duckworth, Michael J. Carson, Geoffrey C. Hulette,

Christopher B. Harrison
September 13, 2019

Sandia National Laboratories is @ multimission Iaboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeyw e U.S. D
National Nuclear Securty Administraiion under ot DL NAO0D3558, SAND No. GANDR01o. 10608 G

@Eﬁ"é'ﬁ"é’i{




About Us @.

m About me: Ph.D. candidate at the O UNIVERSITY OF

University of Oregon, summer OREGON

intern at Sandia National Labs
Digital
“ Foundations
& Maths




About Us

m About me: Ph.D. candidate at the
University of Oregon, summer
intern at Sandia National Labs

m The other six authors work at
Sandia with some portion of their
time spent on Quameleon

O
e

UNIVERSITY OF

OREGON
Digital
Foundations

& Maths




Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems




Introduction m

m Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems




Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems

m Typically decades old with large portions written in assembly




Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly

m Original authors or source code may not be available




Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems
m Typically decades old with large portions written in assembly
m Original authors or source code may not be available

m Our use case: analyze simple systems completely




Introduction

m Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely

Current tools do not support our architectures nor do they
seem easily adapted




Introduction

Sandia does forensic analysis of legacy, high-consequence
systems

® e.g. maintaining nuclear weapon control systems
Typically decades old with large portions written in assembly
Original authors or source code may not be available
Our use case: analyze simple systems completely

Current tools do not support our architectures nor do they
seem easily adapted

We need lifters (decompilers) and verification tools for weird
ISAs




History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary




History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable




History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable

m Rewrite started as a summer project with M63800




History m

m Prior work consisted of one-off Haskell programs for a single
ISA and single binary

m Successful but not scalable
m Rewrite started as a summer project with M63800

m Has since expanded to a small team working on Quameleon
(the other six authors)




History m

Prior work consisted of one-off Haskell programs for a single
ISA and single binary

Successful but not scalable

Rewrite started as a summer project with M6800

Has since expanded to a small team working on Quameleon
(the other six authors)

& '@ | 8800 Microprocedsar Pragraniming Manual= 1)




Motivation

m Need to analyze binaries on proprietary ISAs




Motivation

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes




Motivation

m Need to analyze binaries on proprietary ISAs
m ISAs not supported by existing tools
® No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes
m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs




Motivation

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

m We instead require an adaptable IL




Motivation m

m Need to analyze binaries on proprietary ISAs

m ISAs not supported by existing tools
m No machine-readable specification
m Bad old days: No IEEE-754 floats, no 8-bit bytes

m Other tools gain lots of efficiency from expressive ISAs and
feature-rich ILs

m We instead require an adaptable IL

Fun example: cLEMENCy architecture made up for DEFCON had
9-bit bytes, 27-bit words, middle-endian [3]




Design Goals of the Quameleon Intermediate m
Language (QIL)

m Sound analysis of binaries




Design Goals of the Quameleon Intermediate m
Language (QIL)

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends




Design Goals of the Quameleon Intermediate m
Language (QIL)

m Sound analysis of binaries

m Lift binaries into a simple IL amenable to multiple analysis
backends

m Closer to LLVM IR in spirit




Design Goals of the Quameleon Intermediate m
Language (QIL)

Sound analysis of binaries

Lift binaries into a simple IL amenable to multiple analysis
backends

Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior




Design Goals of the Quameleon Intermediate m
Language (QIL)

Sound analysis of binaries

Lift binaries into a simple IL amenable to multiple analysis
backends

Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior

Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write




Design Goals of the Quameleon Intermediate m
Language (QIL)

Sound analysis of binaries

Lift binaries into a simple IL amenable to multiple analysis
backends

Closer to LLVM IR in spirit
Contrast with Ghidra [1], angr [2]: we know intended behavior

Size of QIL (~ 60 instructions) means easy to manipulate,
harder to write

Balance this with Haskell as a macro-assembler for QIL




Architectural Overview m

ISA | Concrete Execution Engine |
Specification
DSL Custom Symbolic Execution
Engines

\
Quameleon ‘

M6800 Intermediate ‘ | Weakest Precondition |
Language ‘

— | LLVM/KLEE |

Other ISAs

Angr toolchain
(Symbolic Execution, etc.)

Optimizations for
Analysis |

Abstract Interpretation |




Architectural Overview

Quameleon
Intermediate

Language

QIL = Quameleon Intermediate Language




QIL Types

Values: bit vectors of arbitrary width

Locations: where values can be written

Blocks: Single-entry, multiple exit

Labels: Start of a block

RAM: Mutable cells of Locations indexed by Values
JoinPoints: Continuation within a block

I/O: Like volatile variables




QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point




QIL Programs

A program consists of four sections:
1. Size of Locations
2. Sequence of allocations (of registers and memories)
3. Sequence of blocks, each binding a label
4. A code entry point
Within a block
m Variables are static single assignment

m No loops




Haskell DSL [EI

ISA Concrete Execution Engine
Specification
DSL Custom Symbolic Execution
Engines
¢ Quameleon
# Intermediate Weakest Precondition
Language

Other ISAs LLVM/KLEE

Angr toolchain

) (Symbolic Execution, etc.)
Optimizations for

Analysis Abstract Interpretation

10




Sample M6800

LDA A #14 ; A <- OzE
AND A $40 ; 4 < 4 & [0240]

We want to match the manual closely

11




..and lIts Corresponding Semantics

AND r 1 -> do
ra <- getRegVal r
op <- loc8ToVal 1 -- Loc. of 8 bits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z ——- CC = Condition Code
branch next

12




© 0 ~N O b W N -

[ S v S = S SE G ST Y
ok~ W = O

..and Its Corresponding QIL

code_ptr_size: S16
alloc part {

&l
&2
&3 :=
&4 =
&5
&6
&7 .=
&8 :=
&9
&10 :
&11

MEM (1)

= alloc[S8] // Reg A
alloc[S88] // Reg B
alloc[S16] // Reg X
alloc[S16] // Reg PC
alloc[S16] // Reg SP
alloc[S1] // Carry Flag
alloc[S1] // Overflow Flag
alloc[81] // Zero Flag
alloc[S1] // Negative Flag
alloc([S1] // Interrupt Flag
alloc[S1] // HalfCarry Flag
= buildMemory[S16 S8]

13




..and Its Corresponding QIL (cont.)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

code_part: {

3

@1 := block { }

@2 := registered_block "AND A (DIR8 0x40)" 2 {
%1 := readLoc[S8] &1 // read Register A
&12 := MEM(1) [S16].BV[S8] (40)

%2 := readLoc[S8] &12

%3 := AndBit[S8] %1 %2

writeLoc[S8] &1 %3 // set Register A
branch @1

}

@3 := registered_block "LDA A (IMM8 14)" 0 {
writeLoc[S8] &1 BV[S8](e) // set Register A
%1 := IsZero[S8] BV[S8] (e)
writeLoc[S1] &8 %1 // set Zero Flag
branch @2

}

@4 := block { branch @3 }

entry_point: @4

14

e I mea—




Backends m

| Concrete Execution Engine |

Custom Symbolic Execution
Engines

| Weakest Precondition |

| LLVM/KLEE |

Angr toolchain
(Symbolic Execution, etc.)

| Abstract Interpretation |

15




Current Backends

1. Emulator

16




Current Backends m

1. Emulator
2. Bridge to angr
m angr is a symbolic execution engine primarily for cybersecurity

16




Current Backends m

1. Emulator
2. Bridge to angr

m angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX

16




Current Backends m

1. Emulator
2. Bridge to angr

m angr is a symbolic execution engine primarily for cybersecurity

m Originally planned to translate from QIL to angr's IR, VEX

m VEX has byte-centric memory model, different functions for
add32, add16, etc.

16




Current Backends m

1. Emulator

2. Bridge to angr
m angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX
m VEX has byte-centric memory model, different functions for
add32, add16, etc.
m We needed addition of 96 bit integers

16




Current Backends m

1. Emulator

2. Bridge to angr
m angr is a symbolic execution engine primarily for cybersecurity
m Originally planned to translate from QIL to angr's IR, VEX
m VEX has byte-centric memory model, different functions for
add32, add16, etc.
m We needed addition of 96 bit integers
m Easier to treat QIL as an ISA that angr can execute!

16




Optimizations

Optimizations for
Analysis

17




QIL-QIL Optimizations

The goal is to facilitate analysis

18




QIL-QIL Optimizations

The goal is to facilitate analysis

m Constant folding
Reduce

code size

m Branch to known value

m Dead code elimination

18




QIL-QIL Optimizations

The goal is to facilitate analysis

m Constant folding
Reduce

code size

m Branch to known value
m Dead code elimination
m

Inlining with simple heuristics
e.g. inline everywhere Simplify
Defunctionalization CFG

18




Future Work

m Jump to a Location in memory
m Use abstract interpretation to find Locations code could jump

19




Future Work

m Jump to a Location in memory
m Use abstract interpretation to find Locations code could jump

m Formalize QIL and QIL-QIL transformations in Coq

19




Future Work

m Jump to a Location in memory

m Use abstract interpretation to find Locations code could jump
m Formalize QIL and QIL-QIL transformations in Coq
m Loops with statically-known bounds in blocks

m Don't need the full sophistication of more richly-featured ILs

19




Future Work

m Jump to a Location in memory

m Use abstract interpretation to find Locations code could jump
m Formalize QIL and QIL-QIL transformations in Coq
m Loops with statically-known bounds in blocks

m Don't need the full sophistication of more richly-featured ILs

m Plan to open source as much as possible

19




Conclusion

m Quameleon is a tool for sound binary analysis in its early
stages

QIL is a typed, RISC-like IL to specify legacy architectures
Leverage machine readability with the simplicity of QIL

u
u
m Leverage features of Haskell as an assembler for QIL
m Haskell DSL matches the structure of ISA specs

u

Prefer the flexibility of few assumptions over efficiency of
powerful model

20




References | m

[1] NATIONAL SECURITY AGENCY RESEARCH DIRECTORATE.
Ghidra: A software reverse engineering (sre) framework, 2019.
Available at https://www.ghidra-sre.org.

[2] SmosHITAISHVILI, Y., WANG, R., SALLs, C., STEPHENS, N., PoLINO, M.,
DUTCHER, A., GROSEN, J., FENG, S., HAUSER, C., KRUEGEL, C., AND VIGNA,
G.
SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy (SP) (May 2016), pp. 138-157.

[3] TRAIL OF BITS.
An extra bit of analysis for clemency.
Available at https://blog.trailofbits.com/2017/07/30/
an-extra-bit-of-analysis-for-clemency/.

21



https://www.ghidra-sre.org
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/
https://blog.trailofbits.com/2017/07/30/an-extra-bit-of-analysis-for-clemency/

	Appendix

