
GRIFT: A richly-typed, deeply-embedded
RISC-V semantics written in Haskell

Benjamin Selfridge
Galois, Inc.

benselfridge@galois.com

We introduce the Galois RISC-V Formal Tools (GRIFT) [1],
a formal specification of the RISC-V instruction set archi-
tecture written in the Haskell programming language. It
consists of a description of the encoding and semantics of
each RISC-V instruction in an embedded domain-specific
language (DSL) specialized for instruction set specification,
as well as command-line tools implemented atop this specifi-
cation for sequential simulation, coverage analysis, and doc-
umentation. We compare and contrast our approach to ISA
specification with others developed in the RISC-V Formal
Specification task group—two of which are also written in
Haskell—and discuss future applications and directions.

1 Introduction
RISC-V is an open source instruction set architecture

developed at UC Berkeley [15]. The base instruction set
is very limited, at around 50 instructions, and more func-
tionality is offered via a number of standard extensions
(M for multiplication, F and D for single- and double-
precision floating-point, etc.). Hardware designers can pick
and choose which bit widths and extensions they want to sup-
port, and can also develop their own custom extensions that,
if widely adopted by the community, can be standardized by
the RISC-V Foundation.

As a new foundation for hardware platforms,
RISC-V has provided an opportunity to design an in-
struction set, along with its associated ecosystem of
compilers, hardware designs, and formal methodologies, in
a more unified and intentional manner than has been possible
for proprietary ISAs. To this end, the RISC-V Foundation
has established a number of task groups to address the
growth of the RISC-V instruction set and its accompanying
infrastructure. The Formal Specification task group was
organized with the following stated intent:

This group will produce a Formal Specification for
the RISC-V ISA. This is a specification of the ISA
in a formal language, for precision, unambiguity,
consistency and completeness. It should be read-
able and understandable as a canonical reference
by practising CPU architects and compiler writers.
It should [sic] executable and machine-manipulable

for use in formal tools for establishing correctness
and transformations in both compilers and CPU de-
signs. [8]

We suggest that such a specification ought to contain a max-
imally general and precise description of the behavior of
every RISC-V instruction. It should also be highly config-
urable, because RISC-V has a large number of customizable
implementation choices, including register width and avail-
able extensions.

We further suggest that a canonical specification, capa-
ble of being useful to hardware designers, compiler writers,
and formal methods experts, should be designed as a kind of
Rosetta Stone for RISC-V . The ISA should be easily trans-
lated from the specification language to any other target lan-
guage. One needs to be able to use the specification to vali-
date a large number of hardware and software artifacts, and
such validations will likely involve multiple external tools,
each with a unique interface. It is therefore important to en-
sure that backends for these tools are easy to build as new
needs arise.

Galois RISC-V Formal Tools (GRIFT) [1], the system
described in this paper, was designed with these goals in
mind. It uses Haskell as the modeling language, which was
a natural choice given its facility for describing domain-
specific languages (DSLs), as well as the place it occupies at
the intersection of practical programming languages and for-
mal methods. By explicitly expressing the RISC-V feature
model within the Haskell type system via a number of ad-
vanced extensions to the Glasgow Haskell Compiler (GHC),
GRIFT puts the customizability of the architecture front-and-
center. Furthermore, rather than modeling state transitions as
Haskell functions, GRIFT uses an embedded DSL to encode
those state transitions, the syntax of which can be easily in-
spected, analyzed, and translated into other forms (see figure
1). This makes GRIFT a logical candidate as an all-purpose
RISC-V specification that can be leveraged for a wide variety
of applications.

GRIFT is configurable for both 32-bit and 64-bit regis-
ter widths, and also supports all the standard extensions: I
(base), M (multiplication), A (atomic memory operations), F
(single-precision floating point), D (double-precision float-



Fig. 1. GRIFT’s DSL-based design. Dotted lines indicate future
work (see section 5).

ing point), and C (compressed instructions). It does not yet
have full support for user-level and supervisor-level privilege
modes, but such support is planned.

2 The GRIFT Haskell Library
GRIFT provides the Haskell programmer with a num-

ber of artifacts, including a type-level representation of
the RISC-V feature model that pervades all aspects of the
specification, a declarative mechanism for expressing in-
struction encodings, and an embedded DSL for encoding
RISC-V state transitions.

2.1 The RISC-V Feature Model as a Type
One aspect of RISC-V that should be very precisely cap-

tured by a canonical specification is its parameterizability.
Every implementation must contain the base (RV32I) in-
struction set, which consists of the core instructions that are
always present regardless of register width and supported
extensions. It can then choose whether to support 32- or
64-bit register widths, which of a selection of various stan-
dard (and potentially non-standard) extensions to include,
and other, finer-grained decisions (such as whether to sup-
port misaligned memory accesses in hardware). The set of
all possible parameterizations of a complex system like this
is best represented by a feature model. Feature models are
well-studied in a specialized subset of the formal methods
and programming languages communities. [12] [13] The full
RISC-V feature model is quite large, due to the plethora of
minute decisions that are left to the implementer. GRIFT’s
feature model currently accounts for the register width and
extensions, but does not yet incorporate other implementa-
tion decisions such as misaligned accesses and the many ac-
knowledged ambiguities in the RISC-V privileged architec-
ture.

We chose to encode the RISC-V feature model directly
in the type system as a parameter to all of the central GRIFT
data types. A particular instance of RISC-V (characterized
by its register width and implemented extensions) is rep-
resented as a data kind, or type-level data structure, hold-
ing all the information specific to that configuration. All of
GRIFT’s core data types are parameterized over all possible
configurations, and we can then impose constraints on the
constructors of those types to guarantee that they cannot be

used in a RISC-V instance that forbids them. As a simple
example, the declaration of the Opcode data type is as fol-
lows:

data Opcode :: RV -> Format -> * where

Add :: Opcode rv R
Sub :: Opcode rv R
<...>
Mul :: MExt << rv => Opcode rv R
<...>

The Opcode data type has two type parameters, an RV and
a Format. The RV parameter is a particular instance of the
RISC-V feature model. Since Add and Sub are valid for
any RISC-V instance, no constraint is placed on the rv type
variable. However, Mul is only valid in a context where the
M (multiply/divide) extension is present. Accordingly, we
add the constraint MExt << rv to that constructor, ensur-
ing that Mul is only used in such scenarios.

The choice to enforce the RISC-V feature model so rig-
orously was not without its drawbacks. GHC’s support for
dependent types is somewhat ad hoc and experimental, mak-
ing it difficult to use and understand for someone not familiar
with the more cutting-edge GHC extensions. However, we
believe that the consistency and structure of the specification
benefits greatly from this level of rigor, in spite of some of
the resulting awkwardness.

2.2 Instruction Encoding
A significant design goal for GRIFT was to avoid di-

rectly encoding aspects of the ISA via Haskell functions, be-
cause the syntax of Haskell cannot be directly inspected in a
reflective manner. Instead, we chose a more concrete repre-
sentation for the core aspects of the ISA. Instead of simply
writing a decode function that converts a 32-bit word to an
Opcode, we chose instead to represent an instruction’s en-
coding as a piece of data that can be inspected, analyzed, and
rendered by the user however he pleases.

One consequence of this design decision is that we have
effectively created a bidirectional mapping between concrete
instructions in binary form and their abstract representations.
This means that the decode and encode functions can
both reference the same encoding data to perform their re-
spective tasks, and are automatically inverses of each other.
Thus, GRIFT can be used for generating binaries as well as
analyzing and simulating them.

2.3 The GRIFT State Transition DSL
GRIFT uses a deep embedding of the semantics of each

instruction. Instead of modeling the effect that each instruc-
tion has on the machine state as a Haskell function, we in-
stead developed an abstract syntax tree (AST) to encode
these transitions syntactically. Listed below are the seman-
tics of the add instruction:

defInst Add $ instSemantics
(Rd :< Rs1 :< Rs2 :< Nil) $ do



rd :< rs1 :< rs2 :< Nil <- operandEs

let x_rs1 = readGPR rs1
let x_rs2 = readGPR rs2
let res = x_rs1 ‘addE‘ x_rs2

assignGPR rd res
incrPC

This code does not modify any state directly; instead, it
builds abstract syntax in our embedded DSL. This represen-
tation can then be executed in simulation (similar to other
Haskell specifications, like Forvis [2] and riscv-semantics
[3]), and it can also be leveraged for other purposes that deal
directly with the semantics as data.

The GRIFT DSL also makes strategic use of dependent
types to track the compile-time width of all the symbolic bit
vectors within the semantics. We have found through experi-
ence that many ISA semantics bugs are directly attributable
to an imprecise notion of vector width; GRIFT addresses this
issue by always demanding that the width of any bit vector is
known at compile time. This leads to a wide class of seman-
tics bugs being eliminated before the code is ever run.

3 Command-Line Tools
To demonstrate the GRIFT library, we developed

a simulator, grift-sim, that executes ELF files
containing RISC-V programs compiled for any valid
RISC-V configuration. This simulator also provides two dif-
ferent flavors of post-simulation coverage analysis: 1) in-
struction set coverage (that is, how many different kinds of
instructions were executed), and 2) intra-instruction branch-
ing coverage (so, if an instruction includes semantic branch-
ing, the user can easily discover which of those branches
were actually executed and which were not). This capa-
bility was used to discover several coverage holes in the
RISC-V compliance suite [4], involving all of the branch-
ing and memory access instructions. Because the semantics
of GRIFT are represented as syntax rather than Haskell func-
tions, we are able to directly inspect and track the structure of
the state transitions, rendering this analysis straightforward.

To use GRIFT to analyze overall instruction coverage
of the compliance suite for RV32I, we invoke the following
command:

$ grift-sim --arch=RV32I
--inst-coverage=all rv32i/*.elf

This lists every available instruction, along with how many
of the possible branches were actually executed during simu-
lation. To discover which branches of a particular instruction
were missed, we change the keyword all to the instruction’s
opcode (e.g. add), and the tool prints out the branching
structure of the instruction, using different terminal colors
to indicate which branches were executed and which were
not.

GRIFT also comes with a proof-of-concept documenta-
tion tool, grift-doc, which displays both the binary en-

coding and the semantics of individual instructions on the
command line. The textual descriptions generated by this
tool are extracted directly from the semantics. This tool
makes GRIFT useful for those wishing to understand how
specific instructions operate, without having to understand
the source code itself, and we plan to expand it to produce
LATEXas well as simple text.

4 Comparison with other RISC-V Formal Specification
Task Group Efforts
GRIFT is one of five different specification efforts

under development as part of the RISC-V Formal Spec-
ification Task Group. The others are the Haskell-based
Forvis [2] (Bluespec) and riscv-semantics [3] (MIT), the
RISC-V model written in the Sail ISA description language
[5] [10] (University of Cambridge), and the RISC-V model
written in Kami [6] (MIT and SiFive). The Kami system is
itself embedded in the Coq proof assistant.

GRIFT’s main distinguishing feature in relation to the
other two Haskell specifications is its use of a deeply-
embedded DSL to express instruction encoding and seman-
tics. This means that the state transition induced by an in-
struction is an object that can be analyzed and manipulated
from within the host language, rather than as a function,
which cannot be inspected so directly. Both Forvis and riscv-
semantics model instruction semantics as Haskell functions.
This approach has the advantage of being more accessible to
a human reader of the specification. However, this represen-
tation can be somewhat cumbersome to work with for other
purposes; as an example, both of these specifications have
been translated to Coq and Verilog, but the translation must
be performed by analyzing the Haskell source with external
tools (hs-to-coq [14] and CLASH [11], respectively). With
GRIFT, backends for Coq, Verilog, etc. could be developed
within Haskell, with code that translates the syntax of the
DSL into the destination language.

Despite being written in the same language as Forvis
and riscv-semantics, GRIFT is closer in principle to the
RISC-V specification written in the Sail ISA description lan-
guage [9]. Sail is a DSL designed specifically for describing
the semantics of instruction set architectures, and has been
used to develop formal specifications of x86, ARM, Pow-
erPC, and now RISC-V. Sail also has language constructs
and supporting infrastructure for describing the semantics of
concurrent memory accesses by multiple processors; GRIFT
currently has no such support. However, given GRIFT’s
DSL-based rendering of the semantics, entirely divorced in
principle from a sequential environment, we can imagine ex-
panding GRIFT to express concurrency, either declaratively
or operationally. The question of how best to accomplish this
is a complex problem; it leads to intractable non-determinism
at simulation time, and even if a memory model is very pre-
cisely specified (as the RISC-V Memory Model Task Group
has made it), it is no simple task to express it adequately in a
useful way.

A notable shortcoming of GRIFT is that it does not cur-
rently support the full privileged specification with accom-



panying user and supervisor modes, as the other models do.
It will be straightforward to incorporate these features into
GRIFT, and we plan to do so in the near future.

5 Future Work and Reflections
Aside from making GRIFT more feature-complete with

respect to the RISC-V privileged architecture, we plan to
explore the applicability of GRIFT to software and hard-
ware verification. Recently, we began development of a
RISC-V backend for macaw, a Haskell library for binary
code discovery also developed at Galois [7]. We also plan to
develop backends that translate the GRIFT DSL to other sys-
tems, including hardware description languages like Verilog
and theorem provers like Coq and ACL2. This would en-
able use of the specification in those environments for equiv-
alence checking against hardware designs, and for binary-
level software correctness proofs. All of these applications
can be accomplished by writing more Haskell libraries that
import GRIFT as a submodule; no other external tooling is
required, in principle.

We have also experimented with using GRIFT to gen-
erate test cases that are complete with respect to various
notions of coverage. This could be incorporated into the
RISC-V Compliance Task Group’s work, generating ran-
domized variants of the tests they have developed.

GRIFT was designed to be an all-purpose formal spec-
ification for RISC-V . It puts the RISC-V feature model at
the center of its design, which provides clarity about how the
various extensions and register widths interact. It also repre-
sents the core aspects of the ISA (instruction encodings and
semantics) as concrete data, which makes it straightforward
to use in a wide variety of contexts. We plan to continue to
develop and use GRIFT as a Rosetta Stone for RISC-V .

Acknowledgment
This material is based upon work supported by the De-

fense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-18-C-0013. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily re-
flect the views of the Defense Advanced Research Projects
Agency (DARPA).

This document was cleared by DARPA on July 23, 2019.
All copies should carry the Distribution Statement “A” (Ap-
proved for Public Release, Distribution Unlimited). If you
have any questions, please contact the Public Release Cen-
ter.

References
[1] https://github.com/GaloisInc/grift.
[2] https://github.com/rsnikhil/Forvis_

RISCV-ISA-Spec.
[3] https://github.com/mit-plv/

riscv-semantics.

[4] https://github.com/riscv/
riscv-compliance.

[5] https://github.com/rems-project/
sail-riscv.

[6] https://github.com/sifive/
RiscvSpecFormal.

[7] https://github.com/GaloisInc/macaw.
[8] Formal specification task group. https://lists.

riscv.org/g/tech-formalspec.
[9] A. Armstrong, T. Bauereiss, B. Campbell, S. Flur, K. E.

Gray, P. Mundkur, R. M. Norton, C. Pulte, A. Reid, and
P. Sewell. Detailed models of instruction set architec-
tures: From pseudocode to formal semantics. Auto-
mated Reasoning Workshop, 2018.

[10] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid,
K. E. Gray, R. M. Norton, P. Mundkur, M. Was-
sell, J. French, C. Pulte, S. Flur, I. Stark, N. Krish-
naswami, and P. Sewell. Isa semantics for armv8-a,
risc-v, and cheri-mips. Proc. ACM Program. Lang.,
3(POPL):71:1–71:31, Jan. 2019.

[11] C. Baaij, M. Kooijman, J. Kuper, W. Boeijink, and
M. Gerards. Cash: Structural descriptions of syn-
chronous hardware using haskell. In Proceedings of
the 13th EUROMICRO Conference on Digital System
Design: Architectures, Methods and Tools, pages 714–
721, United States, 9 2010. IEEE Computer Society.
eemcs-eprint-18376.

[12] M. Janota and G. Botterweck. Formal approach
to integrating feature and architecture models. In
J. L. Fiadeiro and P. Inverardi, editors, Fundamen-
tal Approaches to Software Engineering, pages 31–45,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[13] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented
project line engineering. IEEE Softw., 19(4):58–65,
July 2002.

[14] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and
S. Weirich. Total haskell is reasonable coq. CoRR,
abs/1711.09286, 2017.

[15] K. Waterman, Andrew; Asanovic. The risc-v instruc-
tion set manual, volume 1: Unprivileged isa, June 2019.
https://riscv.org/specifications/.


