
Instruction Set Architecture Specification,1

Verification, and Validation using Algorithmic C2

and ACL23

David S. Hardin4

Collins Aerospace, USA5

david.hardin@collins.com6

Abstract7

It is common practice during Instruction Set Architecture (ISA) development to create an ISA8

simulator, usually in C/C++. We describe an experiment in which we implement such an ISA9

simulator for a derivative of a popular ISA written in a subset of Algorithmic C, to allow for the10

verification of binary programs targeting that ISA, as well as to aid in the validation of the ISA11

model via simulated execution of test programs on the model. Algorithmic C defines C++ header12

files that enable compilation to both hardware and software platforms, providing support for the13

peculiar bit widths employed, for example, in floating-point hardware design. We utilize a toolchain,14

due to Russinoff and O’Leary, that provides a translation from a restricted subset of Algorithmic C15

to the Common Lisp subset supported by the ACL2 theorem prover. This toolchain, called RAC, is16

documented in Russinoff’s recent book on floating-point hardware verification. We create an ISA17

simulator in this C++ subset, use RAC to translate this simulator code to ACL2, produce small18

binary programs for the ISA that we use to validate the simulator, and utilize the ACL2 Codewalker19

decompilation-into-logic facility to prove those programs correct.20

2012 ACM Subject Classification Hardware → Hardware validation21

Keywords and phrases Formal verification, theorem proving, instruction set architecture, decompi-22

lation into logic23

Digital Object Identifier 10.4230/LIPIcs...24

1 Introduction25

in his tour de force book on floating-point hardware verification [4], David Russinoff details26

a 20-year quest to provide mathematical proofs for complex arithmetic hardware utilizing an27

automated theorem prover, namely ACL2. Russinoff begins by presenting a formalization of28

modular arithmetic in standard mathematical notation, but backed by collections of ACL229

lemmas, called books in ACL2 parlance. The RTL books are named after the “Register30

Transfer Logic” artifacts that hardware designers produce using Hardware Description31

Languages (HDLs), and are designed for reasoning at the RTL level. After developing32

progressively more complex arithmetic circuits, Russinoff concludes his text with the complete33

verification of representative ARM floating-point RTL for addition, multiplication, fused34

multiply/add, division and square root. All of the sources and tools described in Russinoff’s35

book are available as part of the ACL2 distribution, so the curious reader can reproduce his36

verification results.37

The HDL that Russinoff employs in his book is a subset of Algorithmic C. Algorithmic C1
38

entails a set of freely available C++ header files providing support for hardware development,39

including the peculiar bit widths utilized in floating-point design, and enables compilation to40

both hardware and software platforms. The Restricted Algorithmic C toolchain, or RAC,41

evolved from a similar toolchain for SystemC called MASC [3]. RAC accepts Algorithmic C42

1 Available at https://www.mentor.com/hls-lp/downloads/ac-datatypes

© David S. Hardin;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.hardin@collins.com
https://doi.org/10.4230/LIPIcs...
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Instruction Set Architecture Specification, Verification, and Validation

Algorithmic C Headers

Algorithmic C
Source

C++ Compiler Hardware Synthesis

RAC
ACL2 Translator

Lemmas

ACL2
Theorem Prover Codewalker

Proofs

Figure 1 Restricted Algorithmic C (RAC) toolchain and Codewalker.

struct leg64St {
ui10 pc;
array<ui64, REG_SZ>regs;
array<ui32, CMEM_SZ>cmem;
array<ui64, DMEM_SZ>dmem;
ui8 opcode;
ui8 op1; [...] }

leg64St leg64step(leg64St s) {
return do_Inst(nextInst(s)); }

leg64St leg64steps(leg64St s, uint n) {
for (uint i=n; i>0; i--) {

s = leg64step(s); }
return s; }

Figure 2 Fragment of the LEG64 ISA state and step functions in Restricted Algorithmic C.

source, then translates it to S-expression forms acceptable to ACL2. A simplified view of the43

RAC toolchain is shown in Fig. 1; for a complete depiction, see Fig. V.1 of [4].44

RAC imposes several restrictions on the Algorithmic C developer. The most significant45

of these is that all RAC function arguments must be pass-by-value, and all functions must46

be side-effect-free. Please refer to Chapter 15 of [4] for details.47

2 ISA Specification in Restricted Algorithmic C48

Our present challenge is to determine whether the RAC toolchain can be used to develop49

an Instruction Set Architecture (ISA) simulator, of the sort commonly crafted (usually in50

C/C++) during ISA design. The simulator should support proof-based verification, as well51

as validation by simulation. For this experiment, we have created a simple 64-bit ISA, quite52

similar to a commercially popular architecture, called LEG64. Figure 2 presents a fragment53

of the LEG64 ISA state vector (left side), and instruction-stepping functions (right side).254

RAC translates the state struct, including its arrays, to ACL2 records, with ag get55

function, and as set function. The fixed-width data types are enforced in ACL2 using the56

RTL (bits y i j) function, which returns a bit-slice of y between bit indices i and j. Loop57

bodies are translated into ACL2 recursive functions, with generated ACL2 :measure forms58

to aid in termination analysis. The resulting ACL2 functions are readable, if not pretty.59

3 Validation by Simulation60

To validate our RAC specification for the ISA, we can use the C++ executable for the ISA61

simulator, a hardware simulator, or the RAC-translated ACL2 simulator, as depicted in62

2 Complete sources available at https://github.com/david-s-hardin/algoc-isa



David S. Hardin XX:3

ui64 fact(ui64 n, ui64, acc) {
if (n == 0) {

return acc;
} else {

return fact(n-1, acc * n);
}

}

.L3: cmp r0, #0 ; r0 == 0?
beq .L2 ; if so, done
mul r1, r1, r0 ; r1 <- r1*r0
sub r0, r0, #1 ; r0 <- r0-1
b .L3 ; goto top

.L2: mov r0, r1 ; r0 <- r1
ret ; return

Figure 3 Example test program for the LEG64 ISA simulator.

Fig. 1. In all cases, we validate the ISA simulator by loading the simulated code memory63

with binary programs compiled for our target ISA, load the data memory and registers64

appropriately for a given test, then step the simulator for the required number of steps, then65

inspecting the relevant elements of the resulting state vector. The results of running tests66

on the C++ executable of the ISA simulator can be checked against the translated ACL267

model as a validation check for the translation; ACL2’s speed aids in this effort.68

4 Verification by ACL2 Proof using Codewalker69

Once the LEG64 simulator has been translated to ACL2, we can reason about the translated70

functions, using the RTL books, as well as other ACL2 books. We can also reason about71

LEG64 binary code, using J Moore’s decompilation-into-logic tool, Codewalker3. We have72

previously used Codewalker to prove properties of LLVM code [1].73

As an example, consider a simple tail-recursive unsigned 64-bit factorial function (left of74

Figure 3), compiled to yield the LEG64 code on the right of Figure 3. The input parameter,75

n, is passed in using register r0, and the tail-recursive accumulator, acc, is passed in r1. The76

function actually computes acc * n!, which is equal to n! when acc = 1 (modulo 64 bits).77

This result is then copied into register r0 for return to the caller.78

To begin the verification, we describe the LEG64 machine, its registers, memories, and79

ISA simulator functions, to Codewalker, and provide it the binary of the code of Figure 3.80

Codewalker then “walks” the binary code, guided by the ACL2 ISA simulator, and decompiles81

each basic block into a semantic function summarizing the effect of that block on the ISA82

state s, in the style of Magnus Myreen’s Ph.D. work [2]. Codewalker also generates a83

per-block clock function, giving the number of instruction steps needed for a given input84

condition. We can then instruct Codewalker to “project” the final value for a given register85

out of a loop, producing a function that abstracts away the LEG64 state details. That86

function can then be reasoned about, and/or executed in ACL2. For our factorial example,87

Codewalker produces (fn1-loop pc n acc) for the final accumulator value, a function of88

the ISA simulator program counter pc, input value n, and initial accumulator value acc. After89

creating a “wrapper” function, fn1, we prove the correctness theorems of Figure 4, where !90

is a non-tail-recursive infinite-precision factorial function, and expt is exponentiation.91

Finally, we prove that the execution of the loop of the factorial subroutine, loaded into92

code memory of the simulated LEG64, using the stepping function leg64steps, written in93

Algorithmic C and then translated by RAC to ACL2, for the number of steps given by the94

3 Codewalker is part of the ACL2 standard distribution, in books/projects/codewalker



XX:4 Instruction Set Architecture Specification, Verification, and Validation

(defthm fn1-loop-is-acc-*-n!
(implies
(and (natp n)(natp acc)

(< n (expt 2 64))
(< acc (expt 2 64)))

(equal (fn1-loop 0 n acc)
(bits (* acc (! n)) 63 0))))

(defun fn1 (n) (fn1-loop 0 n 1))

(defthm fn1-is-n!
(implies
(and (natp n) (< n (expt 2 64)))

(equal (fn1 n)
(bits (! n) 63 0))))

Figure 4 Correctness theorems for the projected loop result function from Codewalker.

(defthm reg-1-of-fact-loop-is-acc-*-n!
(implies
(and (fact-routine-loadedp s) (integerp (ag 0 (ag ’regs s)))

(<= 1 (ag 0 (ag ’regs s))) (< (ag 0 (ag ’regs s)) (expt 2 64))
(integerp (ag 1 (ag ’regs s))) (< (ag 1 (ag ’regs s)) (expt 2 64))
(= (ag ’pc s) 0))

(equal (ag 1 (ag ’regs (leg64steps s (acl2::clk-0 s))))
(bits (* (ag 1 (ag ’regs s)) (! (ag 0 (ag ’regs s)))) 63 0))))

Figure 5 Correctness of the factorial loop when executed on the LEG64 ISA simulator.

Codewalker-generated clock function clk-0, yields the expected result, as shown in Figure 5.95

5 Conclusion and Future Work96

We have used Restricted Algorithmic C to create an ISA-level simulator for a representative97

CPU, and successfully employed the RAC toolchain, initially developed to verify floating98

point hardware, to translate this simulator to ACL2. We produced small binary programs99

for the ISA that we used to validate the simulator, then utilized the ACL2 Codewalker100

decompilation-into-logic facility to prove those programs correct.101

Future work includes refining the RAC toolchain to allow tail recursion, support for ACL2102

typed records and/or stobjs, as well as investigating the verification of hardware/software103

codesigns. Codewalker is an experimental tool, and while its ability to comprehend new104

instruction sets and automatically create semantic functions, clock functions, etc., is impres-105

sive, it is difficult to configure. Additionally Codewalker is only useful for single subroutines;106

future work is needed to improve usability and scalability.107

References108

1 David S. Hardin. Reasoning about LLVM code using Codewalker. In Proceedings of the 13th109

International Workshop on the ACL2 Theorem Prover and its Applications, volume 192, pages110

79–92. EPTCS, 2015. doi:10.4204/EPTCS.192.7.111

2 Magnus O. Myreen. Formal verification of machine-code programs. PhD thesis, University of112

Cambridge, 2009.113

3 John W. O’Leary and David M. Russinoff. Modeling algorithms in SystemC and ACL2.114

In Proceedings of the 12th International Workshop on the ACL2 Theorem Prover and its115

Applications, volume 152, pages 145–162. EPTCS, 2014. doi:10.4204/EPTCS.152.12.116

4 David M. Russinoff. Formal Verification of Floating-Point Hardware Design: A Mathematical117

Approach. Springer, 2018.118

http://dx.doi.org/10.4204/EPTCS.192.7
http://dx.doi.org/10.4204/EPTCS.152.12

	Introduction
	ISA Specification in Restricted Algorithmic C
	Validation by Simulation
	Verification by ACL2 Proof using Codewalker
	Conclusion and Future Work

