
Formal Verification of Floating-Point RTL with ACL2

David M. Russinoff

June 30, 2019

1 Introduction

The intent of the original IEEE floating-point specification, Standard 754-1985[1], was to establish
an industry standard for the most common arithmetic operations in order to ensure consistent
results across all computing platforms. Inevitably, the major floating-point architectures that have
emerged since the publication of that document have largely ignored its recommendations, especially
with respect to the handling of exceptional conditions. Consequently, no single specification can be
expected to capture the behavior of even the most prevalent architectures.

A prerequisite for the verification of correctness of a commercial floating-point unit, for which
backward compatibility is a strict requirement, is a comprehensive behavioral specification of the
underlying architecture. For this purpose, we have defined such specifications for the most common
elementary arithmetic instructions of the x86 and Arm architectures. These were developed over a
period of more than two decades, during which they were validated against a variety of implemen-
tations produced by AMD, Intel, and Arm through extensive co-simulation and formal verification,
while subjected to continual expert review.

Given the dual objectives of efficient execution and formal analysis, a natural choice of formalism
for these specifications is the ACL2 logic [2], the versatility of which allows a proposed implementation
to be encoded in the same language. A mathematical proof of correctness of the design with respect
to its specification may then be mechanically checked with the ACL2 prover.

This plan presupposes a faithful representation in the ACL2 logic of a floating-point design, which
is typically coded in Verilog at the register-transfer level. One solution to this problem, which was
pursued in our earlier work, is to build a semantics-preserving Verilog-ACL2 translator that generates
an ACL2 program consisting of a function corresponding to each RTL signal [6]. A problem faced by
this approach is that the resulting ACL2 model is generally unwieldy, of code size at least comparable
to that of the original RTL, leasing to concomitantly complex correctness proofs.

A more common industrial practice is the use of an automated sequential logic equivalence
checker [4, 7] to compare a proposed RTL module either to an older trusted design or to a high-level
C++ model. One deficiency of this approach is that the so-called “golden model”, whether coded in
Verilog or C++, has typically never been formally verified itself and thus cannot be guaranteed to be
free of errors. Another is the inherent complexity limitations of such tools, which have been found to
render them inadequate for the comprehensive verification of complex high-precision floating-point
modules.

Our experience has led to a hydrid solution that combines theorem proving with equivalence
checking. We have identified a simple subset of C++, called Rescricted Algorithmic C (RAC), and
implemented a special-purpose parser for this language and a translator to ACL2. A simplified hand-
coded RAC model of a Verilog module generates a more compact and managable ACL2 program
than could be produced by direct translation. Functional equivalence between the Verilog code and
the model may be established automatically by a commercial checker, and the proof of correctness
of the ACL2 representation, although still a substantial effort, may proceed relatively easily.

Our collection of formal specifications is a component of an evolving ACL2 library of general
results pertaining to register-transfer logic and floating-point arithmetic, which resides in the di-
rectory books/rtl of the ACL2 repository [2]. The directory books/projects/rac contains the

1

RAC parser and translator, and books/projects/arm includes ACL2 scripts for correctness proofs
of the elementary arithmetic operations as implemented in an Arm floating-point unit. The library,
language, and applications are thoroughly documented in [5] and briefly summarized below.

2 The ACL2 RTL Library

The instruction specifications as well as our formulation and analysis of implementations are based
on a unified mathematical theory, derived from the first principles of arithmetic and encompassing
two distinct domains of interest: register-transfer logic and floating-point arithmetic. The first of
these comprises the primitive data types and operations on which microprocessor designs are built:
bit vectors and logical operations. A bit vector in our theory is simply an integer, and the operations
are all defined in terms of the standard floor and modulus functions. For example, the slice of a bit
vector x bounded by indices i and j is defined by

x[i : j] = b(x mod 2i+1)/2jc

and the extraction of a single bit is given by

x[i] = x[i : i].

(In this note, we shall use standard mathematical notation instead of ACL2 syntax.)
The bitwise logical operations are built-in ACL2 functions (inherited from Common Lisp), rep-

resented here in a Verilog-like notation. These include the unary complement,

~x = −x− 1,

and the three standard binary operations, for which we derive equivalent recursive formulations that
provide a basis for inductive proofs of their properties. Thus, the “inclusive or” is

x | y =

 y if x = 0 or x = y
x if y = 0
2 · (bx/2c | by/2c) + (x mod 2) | (y mod 2) otherwise.

The usual bitwise characterizations,
~x[i] = 1− x[i],

(x | y)[i] = x[i] | y[i],

etc., are logical consequences these definitions.
The higher-level domain of floating-point arithmetic is based on the decomposition of a non-zero

rational number into sign, significand, and exponent,

x = sgn(x) · sig(x) · 2expo(x),

where sgn(x) ∈ {1,−1}, 1 ≤ sig(x) < 2, and expo(x) ∈ Z, and the fundamental notion of exactness:

x is n-exact⇔ 2n−1sig(x) = 2n−1−expo(x)|x| ∈ Z.

A floating-point format is a mapping of the rationals of a specified degree of exactness and exponent
range to the bit vectors of a specified width. A rounding mode is function that computes, for
given rational x and integer n, an n-exact approximation of x. The library defines and extensively
characterizes the formats and rounding modes employed by the major floating-point instruction sets,
as well as those that are commonly used internally by commercial floating-point units. For example,
the simplest rounding mode, “round toward zero”, is defined by

RTZ (x, n) = sgn(x)b2n−1sig(x)c2expo(x)−n+1.

2

One that does not appear in the IEEE standard but is critical to many implementations is “round
to odd”:

RTO(x, n) =

{
x if x is (n−1)-exact
RTZ (x, n− 1) + sgn(x)2expo(x)+1−n otherwise.

The library includes a section devoted to behavioral specifications of three major floating-point
instruction set architectures: Intel’s original x87 instructions, the newer x86 SSE instructions, and
the Arm architecture. Central to all of these is the IEEE principle of correct rounding, according to
which each of the elementary arithmetic operations of addition, multiplication, division, square root
extraction, and fused multiplication-addition (FMA)

... shall be performed as if it first produced an intermediate result correct to infinite
precision and then rounded that result according to one of the [supported] modes ...

The formalization of this principle in our theory in terms of floating-point formats, rounding modes,
and rational arithmetic is straightforward. However, the architectures of interest differ significantly
in the handling of exceptional conditions, especially the detection and handling of underflow, the
response to a denormal operand, the order of precedence of the pre-computation conditions, the
precedence of operands when more than one is a NaN, and the interaction of exceptions reported by
the component operations of a SIMD (single instruction, multiple data) instruction. Consequently,
a separate set of instruction specifications is required for each architecture. Each of these takes the
form of an executable ACL2 function that computes a bit vector result corresponding to a set of bit
vector operands in the context of a register environment and updates the environment. For example,
the Arm FMA instruction is specified by a function of five arguments: a format (double-, single-, or
half-precision), three bit vectors of width determined by the format, and the initial contents of the
32-bit Floating-Point Status and Control Register (FPSCR), which records exceptions and controls
exception handling and rounding. Two values are returned: a bit vector data result and the updated
contents of the FPSCR.

Finally, a section of the library collects and analyzes algorithms and optimization techniques
that are commonly employed in the RTL implementation of the elementary operations of addition
(various integer adders, leading and trailing zero anticipation), multiplication (several versions of
Booth encoding), and division and square root extraction (SRT algorithms and FMA-based division).
These results have been invaluable in the verification of a variety of designs.

3 Modeling RTL Designs: Restricted Algorithmic C

The intermediate modeling language, RAC, has been designed with several objectives in mind. One
purpose of the model is documentation: it is intended to be a simplified and readable representation
of the design, reflecting the underlying algorithms and essential computations while eliminating inci-
dental implementation details. C++ is a natural candidate in view of its versatility and widespread
use in system modeling, but we require a subset that allows a clear and easily understood semantic
definition, and therefore include only the most basic integer data types, arithmetic operations, and
control constructs.

On the other hand, the RAC model must be sufficiently faithful to the RTL to allow efficient
sequential logic equivalence checking. This motivates the incorporartion of the Algorithmic C register
class templates [3], which model integer and fixed-point registers of arbitrary width and provide the
basic bit manipulation features of Verilog. These data types, along with all other RAC features, are
supported by the commercial equivalence checkers Hector [7] and SLEC [4].

The objectives of translation to ACL2 and formal mathematical analysis dictate a functional
programming paradigm, which we promote by replacing the pointers and reference parameters of
C++ with other suitable extensions. The stipulation that function parameters are passed only by
value dictates that native C arrays may be used only as global constants and in instances where an
array is used only locally. The effect of passing arrays by value is achieved by including the standard

3

C++ array class template. We further compensate for the absence of side-effects by including the
tuple class template, which provides the effect of multiple-valued functions and a convenient means
of simultaneously assigning the components of a returned value to local variables of the caller.

The RAC-ACL2 translation is simplified by a number of control restrictions. For example, an
important feature of the translator is the replacement of iteration with recursion, which is facilitated
by imposing strict requirements on the structure of a for loop to allow the straightforward generation
of an equivalent recursive function that may be automatically admitted to the ACL2 logic by the
prover.

4 Example: Verification of an Arm Floating-Point Unit

The sample RAC application included in the ACL2 repositiory is the formal verification of the FPU
of an Arm Cortex-A class high-end processor, addressing double-precision multiplication, addition,
FMA, division, and square root extraction. The principal algorithms used in this design are taken
from the ACL2 RTL library, including leading zero anticipation, radix-4 Booth encoding, and radix-4
SRT division and square root.

Experimentation with these modules has shown that the multiplier and adder are susceptible
to equivalence checking against a general-purpose high-level C++ FPU model, although requiring
considerable computing resources. This approach was found to be useless, however, for the iterative
operations of division and square root, and for this implementation of FMA, which involves passing
a full 106-bit product from the multiplier to the adder.

As usual, the RAC models were designed to be as compact and abstract as possible while based
on the same algorithms as the RTL and computing precisely the same essential intermediate values
in order to minimize the complexity of equivalence checking, which was performed in this case
by SLEC. This required no user guidance other than supplying correspondences between inputs and
outputs and the latencies of the operations, as the tool has the capability of independently discovering
correspondences between intermediate values, thereby effectively decomposing the equivalence check.

The RAC abstraction of the RTL amounted to a reduction in code of approximately 85%, resulting
in some 86 KB of RAC code and a slightly larger ACL2 model. The correctness proofs were found
to be manageable but more cumbersome than one would like, consisting of a total of nearly 4000
ACL2 lemmas. Future work will focus on exploiting opportunities for simplifying and automating
the proof process.

References

[1] Institute of Electrical and Electronic Engineers: IEEE standard for floating point arithmetic,
Std. 754-1985 (1985)

[2] Kaufmann, M., Moore, J S.: ACL2 web site. http://www.cs.utexas.edu/users/moore/acl2/

[3] Mentor Graphics Corp.: Algorithmic C datatypes. Available at https://www.mentor.com/hls-
lp/downloads/ac-datatypes

[4] Mentor Graphics Corp.: Sequential logic equivalence checker. https://www.mentor.com/-
products/fv/questa-slec

[5] Russinoff, D.: Formal Verification of Floating-Point Hardware Design: A Mathematical Ap-
proach. Springer (2018)

[6] Russinoff, D., Kaufmann, M., Smith, E., Sumners, R.: Formal verification of floating-point rtl
at amd using the acl2 prover. In: IMACS World Congress: Scientific Computation, Applied
Mathematics and Simulation (2005)

[7] Synopsys, Inc.: Hector. http://www.synopsys.com/Tools/Verification/FunctionalVerification/-
Pages/hector.aspx

4

