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Abstract

We provide a high-level overview of two tools developed at Galois on generating verified
LLVM from binaries: reopt, a binary recompilation framework lifts portions of a binary
into LLVM, optimizes the LLVM, and then generates a new binary; and reopt-vcg is a
standalone tool capable of verifying that the behaviors in the LLVM are allowed in the
source binary. The goals of this effort are to build tools for transforming existing binary
software post-relase to do things like apply mission or environment specific optimizations
or introduce additional security hardening techniques. As these tools will rewrite binaries
after traditional testing is complete, a high-level of assurance is required.

1 Introduction
Compiler verification has long been a topic of interest within the formal methods community.
Typically one wants to show that every execution of the compiled program represents behavior
allowed in the source program. The converse need not be true: there may be source program
behaviors that the binary program never exhibits. For example, a source language such as C
may permit the function arguments to be evaluated in any order while the compiler will pick a
specific order during compilation.
Program decompilation, that is analyzing the compiled binary to infer a possible source program
that could have generated it, is a widely used technique for reverse engineering. Recently this
technique has been used to assist in verifying compiled artifacts and to recompile applications
for increased performance or security protections. In these latter applications, one does not
need a full decompiler back to program source, and hence binary raising into an intermediate
representation such as assembly code or LLVM is sufficient.
When raising a binary for rewriting purposes, it is imperative that the decompilation process
does not itself introduce new behaviors in the binary, as the program rewriting will typically
be done post-development, and will not have access to the testing and verification suite used
to originally develop the applications. In contrast to compiler verification (e.g., [3]), the binary
recovery process is not given the program structure but rather must infer it using techniques
such as value-set analysis.
In this paper, we describe ongoing work on binary raising at Galois. In Section 2, we describe
the reopt program reoptimization tool which raises binaries into to LLVM for recompilation.
In Section 3 we describe our translation verifier reopt-vcg for checking the correctness of the
generated LLVM.
Related Work. Decompilation and the underlying techniques have been extensively studied,
and due to space limitations we only survey binary raising tools that target LLVM. These
include SecondWrite [1], McSema [6], RevGen [2], and MCTOOL[8]. Reopt’s design is close to
SecondWrite, but it is not publicly available, and so we are unable to comprehensively evaluate
it. McSema and RevGen use a more direct translation that maps processor registers to a
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Figure 1: Binary recovery

struct; this simplies the implementation, but results in LLVM that does not preserve the binary
interfaces and instead uses an explicit and implicit stack. MCTOOL is based heavily on LLVM,
and appears also to generate ABI-compatible functions.
The above tools do not provide assurance that the LLVM is correct for a given binary. Myreen
et al. [4] translate blocks of ARM machine code into HOL4 terms that capture the semantics
of the block. This work simplifies the verification of machine code within a theorem prover;
Sewell et al. [7], use this framework to prove translation validation for C.

2 Binary Raising
Reopt1 is a post-compilation optimization tool that lifts functions in a compiled binary into
corresponding LLVM bitcode, runs the LLVM optimizer, and then recombines the LLVM with
regions of the original binary, including data and code that could not be lifted, to produce a new
executable. This allows one to use LLVM optimization passes across object code boundaries,
or add additional compiler-provided protections to code that was compiled without it. Reopt
currently supports static X86_64 binaries compiled in the ELF format for Linux. For this
paper, we focus exclusively on the binary to LLVM raising process as that is most closely
related to the formal specification of instruction set architectures.
Reopt’s binary raising occurs as a three step process as shown in Figure 1. The dotted lines
to equivalence mapping info indicates that feature in development to support reopt-vcg. The
basic process consists of (1) loading the binary, (2) a code control-flow discovery algorithm
(discussed below) to identify candidate function entry points as well as basic blocks within each
function, (3) a global analysis to compute register and stack usage to infer function prototypes
and high-water marks on the stack.
Reopt has been released under a BSD-derived license, and is available on Github 2. In Reopt,
the LLVM generated from a binary is sent to LLVM’s optimizer opt, and then combined with
the existing code and data to generate a new executable.
Instruction Set Formalization. Reopt uses an open-source library developed by Galois,
Macaw3, for code discovery. Macaw is written to support multiple architectures, and has

1Available at https://github.com/Galoisinc/reopt
2See https://github.com/GaloisInc/reopt
3Available at https://github.com/Galoisinc/macaw
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libraries for both X86_64 and PowerPC available. The architecture-specific libraries are re-
sponsible for declaring the architecture-specific concepts including the defining the processor
register set, defining specific operations that have side effects or raise exceptions such as floating
point operations and system-level instructions, and providing information about ABI concepts
such as calling conventions and jump-table layout.
The architecture support libraries provide a semantics for the given architecture in the form
of operations for converting byte streams into basic blocks. A basic blocks is represented as a
sequence of simple register transfer language statements. For X86_64, we have manually writ-
ten the instruction semantics and cover many common instructions involving general purpose
registers, but only a small portion of traditional x87 operations, system-level instructions, and
SSE and AVX instructions.

3 Verification
In binary rewriting, it is imperative that any changes to the binary’s behavior are intended.
The first step of binary raising should not make any changes, but only lift the application. As
part of this work, we have constructed a translation verifier, reopt-vcg that takes a binary
executable, LLVM bitcode file, and annotations that relate LLVM functions to addresses in the
executable, and generates proof obligations in the SMT-LIB over the theory of arrays, bitvectors
and uninterpreted functions (QF_AUFBV).
Our verifier seeks to establish that each observable behavior in the LLVM has a corresponding
machine code behavior. For our purposes, we use a strong form of equivalence in which each
operation with side effects, including memory reads and writes in the LLVM, has an equivalent
write in the machine code. For most operations the equivalence must be exact (e.g., in a divison
operation that may signal due to a divide by zero, the divisors must be equivalent). The one
exception however is memory accesses to the stack. LLVM does not allow us to control stack
layout precisely, and omits some of the memory accesses to the stack present in machine code
such as storing the frame pointer and the explicit push of the return address to the stack in
a function call. Finally and most severely, we do not currently allow pointers to the stack to
be stored in global variables or passed between functions. The latter would require additional
memory safety checks for soundness that we do not yet support.
Our verifier accounts for these through annotations and several simplifying assumptions that are
satisfied by Reopt. First, each LLVM basic block must correspond to a particular contiguous set
of bytes in the machine code program, and moreover operations with side effects such as memory
reads and writes that correspond must have the same order within those blocks. Furthermore,
we require the annotations distinguish stack from heap accesses and identify the correspondance
between accesses.
Each basic block within the functions is verified independently, and the annotations are used to
define the appropriate pre-conditions for the block with the function entry point preconditions
defined by annotations on the function along with requirements imposed by the platform ABI
on how arguments map to machine code registers. We have tested the verifier on several small
programs with manually generated annotations, and are currently working on automating the
annotation generation process.

4 Future Work
The current implementation of reopt-vcg is written in Haskell. We are currently working on
implementing this tool in the Lean theorem prover, along with a proof that the VCGs entail
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the equivalence property described above. The intent then is to have a verified translation
verifier for the binary raiser. The key challenge is to prove that our block level verifications are
compositional, so that one has an end-to-end proof of the entire execution.
We currently support a subset of the X8_64 instruction set in Lean; we are experimenting with
using semantics developed by others to both increase the instruction set coverage, and to avoid
institutional bias in the definition of the semantics. We have done experiments in this direction
both by leveraging Valgrind’s VEX IR 4, and ASL [5]. With Valgrind, we have been able to
use the semantics to decode binaries, but there is a large number of operations in Valgrind’s
micro-op language and their semantics is never documented and often unclear. Our ASL work is
still in its early stage and shows promise; a key challenge will be deciding when to expand ASL
functions into their definitions, and when to map the functions to higher-level primitives. Some
of the ASL definitions contain loops or conditional control flow, and expanding the definition
may lead to less efficient code if LLVM optimizations are not able to reconstruct the original
more efficient encoding.
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