
The State of Sail1

Alasdair Armstrong2

Department of Computer Science and Technology, University of Cambridge, UK3

Thomas Bauereiss4

Department of Computer Science and Technology, University of Cambridge, UK5

Brian Campbell6

School of Infomatics, University of Edinburgh, UK7

Alastair Reid8

ARM Ltd., Cambridge, UK9

Kathryn E. Gray10

Department of Computer Science and Technology, University of Cambridge (Formerly), UK11

Robert M. Norton12

Department of Computer Science and Technology, University of Cambridge, UK13

Prashanth Mundkur14

SRI International, Menlo Park, US15

Mark Wassell16

Department of Computer Science and Technology, University of Cambridge, UK17

Jon French18

Department of Computer Science and Technology, University of Cambridge, UK19

Christopher Pulte20

Department of Computer Science and Technology, University of Cambridge, UK21

Shaked Flur22

Department of Computer Science and Technology, University of Cambridge, UK23

Ian Stark24

School of Infomatics, University of Edinburgh, UK25

Neel Krishnaswami26

Department of Computer Science and Technology, University of Cambridge, UK27

Peter Sewell28

Department of Computer Science and Technology, University of Cambridge, UK29

Abstract30

Sail is a custom domain-specific language for ISA semantics, in which we have developed formal31

models for ARMv8-A, RISC-V, and MIPS, as well as CHERI-based capability extensions for32

both RISC-V and MIPS. In particular, our model of ARMv8-A is automatically translated from33

ARM-internal definitions and tested against the ARM Architecture validation suite. All the above34

models contain enough system-level features to boot various operating systems, including Linux and35

FreeBSD, but also various smaller microkernels and hypervisors.36

In this short paper, we present the ways in which Sail enables us to bridge the gap between our37

various ISA models and the myriad use cases for such models. By using Sail, we are able to generate38

emulators for testing and validation, generate theorem prover definitions across multiple major tools39

(Isabelle, HOL4, and Coq), translate Sail to SMT for automatic verification, and integrate with both40

operational models for relaxed-memory concurrency via our RMEM tool.41

We will also present our current work to extend Sail to support axiomatic concurrency models,42

in the style of Alglave and Maranget’s herd7 tool, with the intent being to explore the behaviour of43

concurrent litmus tests that span the full behaviour of the architecture. As an illustrative example,44

one could consider how instruction cache maintenance instructions interact with self-modifying code45

in an axiomatic setting, or other interesting cases that are not well-covered by existing tools.46

© Alasdair Armstrong;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 The State of Sail

2012 ACM Subject Classification Theory of computation → Semantics and reasoning; Computer47

systems organization → Architectures; Software and its engineering → Assembly languages48

Keywords and phrases Instruction Set Architectures, Semantics, Theorem Proving49

Digital Object Identifier 10.4230/LIPIcs...50

1 Overview51

Sail is a custom pseudocode-like language for specifying the semantics of instruction set52

architectures (ISAs). It is a first-order imperative language with a semantics that is as53

straightforward as possible. We have aimed to strike a balance in designing a language that54

is both expressive enough to idiomatically express multiple instruction set architectures,55

which simultaneously being as inexpressive as possible to allow translation to each desired56

target. This balance is partially achieved with a type system that allows dependent types57

for bitvector widths and integer ranges, the typing information from which can be exploited58

by various generic rewrites and backend-specific optimisations e.g. for monomorphisation.59

Figure 1 gives an overview of our currently supported instruction set architectures and target60

uses, updated with changes since our previous paper [6].61

Sequential

Emulator (OCaml)

Sequential

Emulator (OCaml)

Isabelle

Lem

Definitions

ELF model
Lem

Sequential

Emulator (C)

asl_to_sail

ASL
ARMv8−A

Sail
ARMv8−A

SailSail Sail

OCaml,JS,CSS

UI
Coq HOL4

OCaml

Litmus frontend

Framemaker export

parse, analyse, patch

Sail

Power 2.06B
Framemaker

Power 2.06B
XML

Test

Generation

Sail

asl_to_sail

ASL
CHERI ARM

Sail
CHERI ARM

Sail

SMT

Sail

Sail

MIPSRISC−V x86 (core)

RMEM

concurrency

tool

Concurrency models

Lem

Power (core)

CHERI RISC−V CHERI−MIPS ARM (core)

Figure 1 Sail ISA semantics (top) and target use cases (bottom). The greyed out ISAs are from
previous work we are not actively working on

This short paper describes the current state of each of our Sail models, and describes62

ongoing work to enhance Sail with automatic verification and axiomatic concurrency support63

via a translation from Sail into SMTLIB definitions for the Z3 and CVC4 SMT solvers. The64

below table summarises the state of most of our models including our CHERI extensions.65

source KLoS provers boots
ARMv8.5-A ASL 125 Isa, HOL4, Coq* Linux, Hafnium
MIPS hand 2 Isa, HOL4, Coq FreeBSD
CHERI MIPS hand +2 Isa, HOL4, Coq FreeBSD, CheriBSD
RISC-V hand 5 Isa, HOL4, Coq Linux, FreeBSD, FreeRTOS, Hafnium
CHERI RISC-V hand +2 Isa, HOL4, Coq
CHERI ARM ASL Isa

66

https://doi.org/10.4230/LIPIcs...


A. Armstrong et al. XX:3

ARMv8.5-A Our ARMv8-A model is translated from ARM’s internal architecture specifi-67

cation language ASL. Our translation has been validated by running our translation against68

the ARM internal architecture validation suite, as previously discussed in [6]. Recently we69

have been improving Sail’s translation into Coq. We have continued to work on emulation70

performance for ARM, which was previously slower than our other models due to the size71

of the specification, and it now boots Linux in just under 2 minutes (on a Ryzen 5 2600X),72

corresponding to approximately 200 000 instructions per second, roughly a four-fold improve-73

ment over [6]. We have also been working on developing infrastructure for formally proving74

properties of a CHERI ARM specification, but this work is in early stages.75

(CHERI) RISC-V We have extended our RISC-V model with CHERI capability support.76

We have ensured our RISC-V model is extensible, so the CHERI extension (and other77

extensions) are able to exist as a separate repository which builds upon the base model. We78

have further validated the RISC-V spec by running FreeRTOS and a port of the Hafnium79

hypervisor atop the RISC-V model, in addition to Linux, FreeBSD, and seL4.80

(CHERI) MIPS Our CHERI-MIPS model continues to be extended with new CHERI81

instructions, and is now an official part of the CHERI ISAv7 [10] architecture manual.82

2 Automatic property verification with Sail-SMT83

In addition to translating Sail to interactive theorem provers, we have more recently im-84

plemented a translation from Sail into SMT. This enables QuickCheck-like properties to85

be stated and verified in Sail itself (provided they are free of loops, in which case they are86

checked up to some iteration bound). For example, Figure 2 shows a property from our87

CHERI RISC-V specification, which verifies that if setCapBounds claims to have set c’s bounds88

to base and top exactly, then getCapBounds will return the same bounds as were set. While this89

property seems simple, capability bounds are stored using a fairly intricate floating-point-like90

compressed format, and there are additional subtle edge cases at the top and bottom of the91

address space. Our SMT translation was able to discover bugs in our implementations of92

such capability manipulation functions which had not been found via random testing.93

A major advantage we have found in this style of lightweight verification with SMT94

solvers is that it can be used by hardware-designers developing ISA extensions who have95

no experience with interactive theorem proving tools. Another use for hardware-designers96

is to write a Sail version of a function that closely mimics a Bluespec (or other HDL)97

implementation that is complicated due to e.g. timing requirements, and automatically prove98

it equivalent to a simple Sail implementation.99

function set_bounds_exact(c : Capability, base : bits(64), top : bits(65)) -> bool = {

let (exact, c’) = setCapBounds(c, base, top);

let (base’, top’) = getCapBounds(c’);

~(exact) | (unsigned(base) >= unsigned(top))

| (base’ == unsigned(base) & top’ == unsigned(top))

}

Figure 2 An automatically verified property from CHERI RISC-V

The basic approach is similar to that used by existing model-checking tools such as100

CBMC [1], and the approach used for ARM’s ASL language [9]. We first translate the Sail101

source into an intermediate representation (IR) which is shared by the C backend, this is102

then converted into a SSA based control-flow graph, which is then turned into a sequence of103

SMTLIB definitions which can be used with either Z3 or CVC4.104



XX:4 The State of Sail

3 Axiomatic relaxed-memory concurrency with Sail105

Previous work on concurrent behaviours of instruction set architectures using Sail was based106

on our RMEM tool [8] which provides operational-semantics for various memory models.107

However, many architectures, such as RISC-V specify their memory model in an axiomatic-108

style, where the memory model is described in terms of axioms that restrict the set of possible109

candidate executions. Alglave et al’s diy7 [3, 4] tool suite, in particular the herd7 [5] tool,110

already provides a framework for evaluating the relaxed-memory behaviour for small assembly111

programs (litmus tests) over several architectures, using a language called cat [2]. However112

the ISA semantics used by herd is hard-coded in OCaml for each supported architecture113

within the tool, plus additional architecture specific infrastructure for e.g. assembly parsing.114

By combining our Sail to SMT translation with the existing infrastructure for litmus115

tests and cat files provided by the diy7 tools, we aim to produce a tool similar to herd7,116

except using the Sail instruction semantics and assembly parsing infrastructure (which can117

also be specified within Sail). This would give us a architecture-agnostic tool that can118

combine an arbitrary memory model specified in cat, with an ISA specified in Sail. While119

our implementation is still very experimental, initial results are promising, and prior work120

such as Lau et al’s Cerberus-BMC [7] for C11 concurrency demonstrate that the use of a121

SMT solver in this area is practicable.122

References123

1 CBMC: Bounded Model Checking for Software, 2017. http://www.cprover.org/cbmc/.124

2 Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics of the weak consistency125

model specification language cat. CoRR, abs/1608.07531, 2016. URL: http://arxiv.org/abs/126

1608.07531, arXiv:1608.07531.127

3 Jade Alglave and Luc Maranget. The diy7 tool. http://diy.inria.fr/, 2017.128

4 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory129

models. In Proceedings of CAV 2010: the 22nd International Conference on Computer Aided130

Verification, LNCS 6174, 2010. doi:10.1007/978-3-642-14295-6_25.131

5 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding Cats: Modelling, Simulation,132

Testing, and Data Mining for Weak Memory. ACM TOPLAS, 36(2):7:1–7:74, July 2014.133

6 Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,134

Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked135

Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for armv8-a, risc-v, and136

CHERI-MIPS. PACMPL, 3(POPL):71:1–71:31, 2019. doi:10.1145/3290384.137

7 Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-Pharabod, and Peter Sewell.138

Cerberus-BMC: a principled reference semantics and exploration tool for concurrent and139

sequential C. In CAV 2019, July 2019. (to appear).140

8 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.141

Simplifying ARM Concurrency: Multicopy-atomic Axiomatic and Operational Models for142

ARMv8. In POPL 2018, July 2018. doi:10.1145/3158107.143

9 Alastair Reid. Who guards the guards? formal validation of the arm v8-m architecture144

specification. Proc. ACM Program. Lang., 1(OOPSLA):88:1–88:24, October 2017. doi:145

10.1145/3133912.146

10 Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary,147

Jonathan Anderson, John Baldwin, David Chisnall, Brooks Davis, Nathaniel Wesley Filardo,148

Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch,149

Kyndylan Nienhuis, Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell, Stacey Son,150

and Hongyan Xia. Capability Hardware Enhanced RISC Instructions: CHERI instruction-set151

architecture (version 7). Technical report, Computer Laboratory, June 2019.152

http://www.cprover.org/cbmc/
http://arxiv.org/abs/1608.07531
http://arxiv.org/abs/1608.07531
http://arxiv.org/abs/1608.07531
http://arxiv.org/abs/1608.07531
http://diy.inria.fr/
http://dx.doi.org/10.1007/978-3-642-14295-6_25
http://dx.doi.org/10.1145/3290384
http://dx.doi.org/10.1145/3158107
http://dx.doi.org/10.1145/3133912
http://dx.doi.org/10.1145/3133912
http://dx.doi.org/10.1145/3133912

	Overview
	Automatic property verification with Sail-SMT
	Axiomatic relaxed-memory concurrency with Sail

