
Towards Formalizing the x86-64 Instruction
Decoder in K

Andrew H. Miranti Sandeep Dasgupta Grigore Roşu
University of Illinois at Urbana Champaign, USA

{miranti2, sdasgup3, grosu}@illinois.edu

Abstract
The x86-64 instruction set architecture being one of the most complex and widely used ISAs, ensuring
the correctness of the x86-64 binary code is important. One of the strongest ways to ensure that
is to define a formal semantics of the x86-64 language. We present ongoing work in augmenting
the capability of an existing x86-64 formal semantics, with the most complete user-level instruction
support, by formalizing the instruction decoder and thereby allowing direct analysis of binary code.

2012 ACM Subject Classification Software and its engineering → Formal language definitions

Keywords and phrases x86-64, ISA specification, Formal Semantics

1 Introduction

x86-64 being one of the most complex ISAs and widely used in servers and desktop, ensuring
the correctness of the program written in binary is extremely important. A formal semantics
of x86-64 is imperative for formal reasoning about binary code, which is one of the strongest
ways to ensure correctness. A formal semantics of the ISA allows direct reasoning about the
binary code, which is desirable, not only because it allows to analyze the binary even when
the source code is not available (e.g., legacy code or malware), but also because it avoids the
need to trust the correctness of compilers.

Completely formalizing the semantics of the x86-64 ISA, however, is extremely challenging
especially due to the complexity and the large number of instructions that are informally
specified in the reference manual [4]. Despite the challenges, we witnessed the heroic effort [8]
in formalizing the semantics of most of the user-level instructions using the language semantics
engineering framework K. However, the developed semantics is for the assembly language
notation of the binary program and hence limited in the sense that any binary analysis using
that formalism requires, as a prerequisite, converting the binary to the supported mnemonic
notation using an off-the-shelf disassembler. Such a requirement includes the disassembler
in the trusted computing base. Through the present work, we eliminate the limitation by
formally specifying an instruction decoder and thereby allowing [8] to work directly on binary
code. Also, our work is publicly available [7].

2 Instruction Decoding

While a semantics of x86 mnemonics is valuable on its own, its direct uses are limited alone.
Very few real world programs are most conveniently available in assembler form, and not
source or binary forms. Formalizations for many source code languages already exist, and
thus would be a natural choice in the event that source code is available. However, many
programs must make use of precompiled binaries for which source is not available – either
due to IP concerns, the circumstances of the researcher (as an example, malware researchers)
or due to the age of the program. In order to reason about these programs, one must work
from what one has: an executable binary file. Thus, in order to apply the existing semantics
of x86 to more common real world programs, the semantics must incorporate a disassembler
of some form to translate from binary back to the modeled assembly language.

mailto:\hskip 1em\relax \hskip 2em\relax \hskip 2em\relax \hskip 1em\relax \hskip 2em\relax \hskip 2em\relax \hskip 2em\relax \hskip 2em\relax \protect \T1\textbraceleft miranti2, sdasgup3, grosu\protect \T1\textbraceright @illinois.edu

2 Towards Formalizing the x86-64 Instruction Decoder in K

2.1 Approach
Two basic approaches to applying binaries to the existing x86 semantics present themselves.
First, one could disassemble the entire binary into a set of x86 assembler files, and then pass
those directly to run on the semantics unmodified. Alternatively, one could formalize the
semantics of instruction decoding, and perform the decoding at runtime with the semantics.
The first option would seem relatively simpler, as it would allow the use of existing tools
to perform the decoding. However, disassembly of x86 programs is no trivial task. While
there exist many tools capable of disassembling a binary, they are forced to make certain
assumptions about the programs under disassembly. The basic algorithms are as follows:

1. Linear sweep (as implemented in objdump [5]): Starting from the beginning of the text
segment, disassemble instructions sequentially over the entire program. This approach is
the simplest, but breaks if it starts at an incorrect offset, or unexpected data appears in
the text segment of the program.

2. Recursive descent (as implemented in IDA [2]): Starting at a known address (e.g. the
program entry), decode sequentially until a branch is detected, in which case spawn
another thread which decodes the target.

3. Probabilistic (Millet et al. [9]): Use semantic features (for example, register use-def chains
and control transfer targets), that only a real code body would likely demonstrate, as
hints to discover correlations between code bytes (or true instructions) and use those
hints to determine whether a given byte is likely part of an instruction and, if so, at what
offset that instruction is most likely to begin.

However, each of these algorithms share a common flaw: they cannot offer any formal
certainty that the decoded program is actually the one that would run if the binary were
executed, and thus any property proved from that program must be met with some skepticism.
As an example of why, consider the target of an indirect jump (of the form jmp %rax) – where
the target is computed by an arbitrary function. Determining the value of that function’s
return can be arbitrarily complex, up to undecidable. Thus, the location of program flow
is, in the general case, undecidable. Even if no deliberate example of an indirect jump to a
computed location exists, one can still occur through a programming error such as a buffer
overflow. Few, if any, real world x86 programs lack any indirect jumps, as ret performs one.
Thus, any attempt to prove a property over a disassembled binary must solve this problem.
Hence, the need for a formalized decoder.

In order to sidestep these issues, we took the alternative approach of decoding individual
instructions as the semantics execute them. At any given step of execution, the semantics
know exactly where the program counter is, and thus exactly where the next instruction
should start. After decoding and executing the instruction, the semantics know exactly
where the program counter should go next (from the size and semantics of the instruction
decoded). This however requires a formalization of instruction decoding in K, in order to
execute the decoder in tandem with the semantics. To avoid reinventing the wheel, we chose
to base the formalized decoder implementation on an existing implementation - Intel’s x86
instruction decoding and disassembly tool, XED [6]. We ported their decoding algorithm to
K, and modified it to better fit the application and environment.

An x86 instruction can be broken down into 0 − 4 prefixes, the opcode byte(s), the
MODRM byte, the SIB byte, the displacement and the immediate(s). Of these sections, all
but the opcodes are optional. One cannot know how many of these sections exist, or how to
interpret the values contained in them until they have decoded previous sections.

A. H. Miranti, S. Dasgupta and G. Roşu 3

So the first step of the algorithm is to look for prefixes, especially VEX and EVEX prefixes,
each of which will cause future opcode values to be interpreted differently. The presence of
other prefixes is also recorded, and using this information the opcode is found. Using the
information about opcode and prefixes, the presence or absence of the MODRM and SIB
bytes are determined, and these bytes are picked apart for their constituent values.

After all this data has been extracted, the precise instruction and operand variant can be
determined. This is where the K Framework in particular shines – matching arbitrary subsets
of properties to particular patterns is the foundation of both the K rule, and this pivotal
instruction selection step. This match gives this step an extremely intuitive representation
in K – one rule per instruction variant. Moreover, the input data fed to the automatically
generated sections of the original Intel decoder can be re-purposed to automatically generate
these K rules. The reference decoder requires complex generated code to perform what
amounts to pattern matching on various decode properties that can be known without
the instruction variant (as an example, branching between two possible sets of variants on
whether the MOD bits of MODRM were 0b11). K can do all of these pattern matches in
one step, and in a far more legible format by simply incorporating the desired constraint
into a rule.

After instruction selection, the sizes and positions of the remaining sections of the
instructions are known to the decoder, and it can extract them trivially. After this point, the
next challenge is using the decoded instruction to generate the desired semantics operation.
Unfortunately AT&T syntax (which the most complete x86-64 semantics [8], modeled in
K, were based on) lacks clear standardization over all of x86, and its implementation by
GAS [1] differs from its implementation by XED (for example, in how it produces suffixes for
certain instructions), along with changes in instruction mnemonics between input assembler
code and output disassembled code makes mapping decoded instruction mnemonics (decoder
output) to assembly instruction mnemonics (semantics input) nontrivial. This problem was
eventually solved by building a lookup table of assembled instruction variants to original
assembler mnemonics using GAS. Once this step was completed, translating the instruction
operands was relatively simple.

2.2 Evaluation
At first, the decoder was tested on its ability to convert any binary sequence, specifying
to a valid instruction in x86-64, to the corresponding mnemonic. The binary sequences
are obtained either from XED test-suite or created manually using GAS [1] assembler.
A successful completion of this experiment ensured that the decoding logic is correctly
implemented and works for all the valid x86-64 instructions. To gain more confidence, the
decoder was also tested by combining the instruction disassembler with a simple linear sweep
algorithm and then comparing it with the output of XED. Once an acceptable accuracy was
reached, the decoder was combined with the x86 semantics and run on a selection of the
gcc-c torture tests [3]. The tests were modified slightly from their original implementations
by replacing certain standard library implementations with simpler versions. This was done
for the sake of feasibility, as the semantics run much more slowly than native code. As a
ground truth, a similarly modifed version of the gcc torture tests were executed normally,
and any that did not pass (mostly, due to segmentation faults) running natively due to the
simplified stdlib implementations were removed from the selection. This is a limitation of the
semantics, due to the lack of a simulated OS for a reasonable implementation, and a need
to optimize memory performance, we have omitted a concept of memory page ownership,
and thus simulated programs at present will not fault. The gcc torture tests seem generally

4 Towards Formalizing the x86-64 Instruction Decoder in K

to be structured such that the test case will either crash or call abort in the event of an
error. This permitted us to avoid needing to compare process memory images to semantics
memory images (though such a comparison would doubtlessly be useful - we leave it to
future work). A test was considered to run successfully if the semantics produced an exit0
symbol on completion. The initial selection contained 498 tests. Of the 482 of the selected
torture tests that executed successfully natively, 468 (97.1%) executed successfully under
the semantics. Note that the tests were run with a timeout, and many of the failures were
the test running out of time (and this number of failures was very slightly nondeterministic
due to background tasks on the machine). The failures were a mix of programs that used
unsupported instructions, programs which took too long and timed out, programs that called
abort and programs that crashed or aborted during execution. Though not all passed, the
vast majority of the tests did (and, doubtlessly a longer timeout would have allowed several
of the failure cases to pass), and continuing work will see this number increase.

2.3 Limitation
The new decode + execution semantics is much more practically useful than the original
semantics, but still has some limitations. Dynamic linking is not supported, so the binary
must be statically linked (or the dynamic sections made unreachable). Presently the semantics
do not support system calls so, although the decoder can decode them, they cannot be
executed properly. This leads to a need for some debugging symbols, as the semantics must
skip to the <main> symbol rather than starting at the program entry point, since most
libc implementations’ initialization code will always make system calls. Future work will
be addressing these shortcomings, and addressing technical incompatibilities that currently
block symbolic execution over the semantics.

References
1 GNU Assembler. https://en.wikipedia.org/wiki/GNU_Assembler. Last accessed: 30th June

2019.
2 Hex-Rays, The Interactive Disassembler.
3 C Language Testsuites: C-torture version 8.1.0. https://gcc.gnu.org/onlinedocs/gccint/

C-Tests.html, 2018. Last accessed: 30th June 2019.
4 Intel 64 and IA-32 Architectures Software Developer Manuals. https://software.intel.com/

en-us/articles/intel-sdm, 2018. Published on October 12, 2016, updated May 18, 2018.
5 objdump(1) - Linux man page. https://linux.die.net/man/1/objdump, July 2018. Last

accessed: 30th June 2019.
6 Mark Charney. Intel® X86 Encoder Decoder Software Library. https://software.intel.

com/en-us/articles/xed-x86-encoder-decoder-software-library, 2015. Last accessed:
30th June 2019.

7 Sandeep Dasgupta. Semantics of x86-64 in K. https://github.com/kframework/
X86-64-semantics/tree/new_memory_model, 2018. Last accessed: 30th June 2019.

8 Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore
Roşu. A complete formal semantics of x86-64 user-level instruction set architecture. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pages 1133–1148, New York, NY, USA, 2019. ACM. URL:
http://doi.acm.org/10.1145/3314221.3314601, doi:10.1145/3314221.3314601.

9 Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang, and Zhiqiang Lin.
Probabilistic disassembly. In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, pages 1187–1198, Piscataway, NJ, USA, 2019. IEEE Press. URL:
https://doi.org/10.1109/ICSE.2019.00121, doi:10.1109/ICSE.2019.00121.

https://en.wikipedia.org/wiki/GNU_Assembler
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://linux.die.net/man/1/objdump
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://github.com/kframework/X86-64-semantics/tree/new_memory_model
https://github.com/kframework/X86-64-semantics/tree/new_memory_model
http://doi.acm.org/10.1145/3314221.3314601
http://dx.doi.org/10.1145/3314221.3314601
https://doi.org/10.1109/ICSE.2019.00121
http://dx.doi.org/10.1109/ICSE.2019.00121

	Introduction
	Instruction Decoding
	Approach
	Evaluation
	Limitation

