
Quameleon: A Lifter and Intermediate Language for
Binary Analysis

Samuel D. Pollard

spolla@sandia.gov

Digital Foundations & Mathematics,

Sandia National Laboratories

Philip Johnson-Freyd

Digital Foundations & Mathematics,

Sandia National Laboratories

Jon Aytac

Digital Foundations & Mathematics,

Sandia National Laboratories

Tristan Duckworth

Cyber Systems Research, Sandia

National Laboratories

Michael J. Carson

Cyber Systems Research, Sandia

National Laboratories

Geoffrey Compton Hulette

Digital Foundations & Mathematics,

Sandia National Laboratories

Christopher B. Harrison

Cyber Systems Research, Sandia

National Laboratories

Abstract
We present Quameleon, an analysis framework for low-

level programs. Quameleon is takes as input a program

in binary or assembly language format and translates, or

“lifts” this program into an intermediate representation called

the Quameleon Intermediate Language (QIL) which is then

amenable for analysis. The primary features of QIL are: all

operations are parametric over the bit sizes on which they

operate and a value can take on any type. These allow us to

keep the core language of QIL small and allow us to treat

memory and register values as logical formulae, for example,

in order to support symbolic execution. We discuss the de-

sign of QIL and Quameleon and how they support analysis.

CCS Concepts • Software and its engineering → For-
mal software verification.

Keywords ISA, specification, disassembly, binary analysis,

verification

ACM Reference Format:

Samuel D. Pollard, Philip Johnson-Freyd, Jon Aytac, Tristan Duck-

worth, Michael J. Carson, Geoffrey Compton Hulette, and Christo-

pher B. Harrison. 2019. Quameleon: A Lifter and Intermediate Lan-

guage for Binary Analysis. In ITP 2019: Proceedings of the Tenth

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SpISA ’19, September 13, 2019, Portland, OR
© 2019 Association for Computing Machinery.

Conference on Interactive Theorem Proving. September 8–13, Port-
land, OR. ACM, New York, NY, USA, 4 pages.

Introduction
Quameleon is a binary analysis framework: its input is a

program in binary or assembly language and its output is

some high-level analysis. We accomplish this by transform-

ing (or lifting) binaries into an intermediate language (IL),

with which we can perform various optimizations while also

providing a single interface for analysis backends. In this pa-

per, we primarily describe QIL, the Quameleon Intermediate

Language (pronounced “quill”).

We write the semantics of a target machine language in an

embedded Haskell DSL, then generate analyzable QIL from

target programs. QIL features a simple type system targeted

to the domain with types for sized bit vectors, code pointers,

and memory locations; polymorphism and genericity are

limited to the meta (Haskell) level. QIL’s most significant

limitation is it assumes a Harvard architecture; code and

data are separate and self-modification is forbidden. We plan

to address this limitation in future work.

In this work, we focus more on the frontends (lifting) and the

design of QIL rather than the backends (analysis). Current

backends include a bridge to angr [8] and a concrete executor.

Quameleon supports multiple ISAs but in this paper we pick

examples entirely from the, beautifully simple, Motorola

M6800 ISA.

Disassembly and Lifting
The first part of our binary analysis work is to lift a binary
into an intermediate representation. Essentially, this means

exposing the semantic structure of the binary at a higher

level of abstraction.

SpISA ’19, September 13, 2019, Portland, OR Johnson-Freyd, Pollard, Aytac, Duckworth, Carson, Hulette, Harrison

Quameleon
Intermediate
Language

M6800

Optimizations for
Analysis

ISA
Specification

DSL

Concrete Execution Engine

Custom Symbolic Execution
Engines

Weakest Precondition

LLVM/KLEE

Angr toolchain
(Symbolic Execution, etc.)

Abstract Interpretation

Other ISAs

Figure 1. Quameleon pipeline. The bolded blue boxes are

the currently supported backends.

Our use case is similar to tools like Ghidra [6] and IDA [3];

this means that from scratch, the process for analyzing the

binary consists of three main steps.

1. Creating a machine-readable specification of the ISA.

This is accomplished by creating a Haskell data type and

associating a semantics with it.

2. Specifying how to disassemble individual instructions in

binary format into this data type.

3. Understanding the binary formats used for the ISA and

how to separate data from instructions.

One complication is a binary may be self-modifying. This

means there is no a prioriway of disassembling a binary in all

cases. We ignore this complication and instead Quameleon

greedily disassembles each instruction it knows.

Lifting an Instruction
Lifters to QIL are fairly straightforward thanks to Haskell’s

type system, the parametricity of QIL, and the simple de-

sign of (most) assembly instructions. Usually, specification

of the behavior of many instructions can be accomplished

in just a few lines of Haskell. As an example, consider the

implementation of the logical and operation below.

AND r l -> do
ra <- getRegVal r
op <- loc8ToVal l -- location of 8 bits in RAM
rv <- andBit ra op
z <- isZero rv
writeReg r rv
writeCC Zero z -- CC = Condition Code
branch next

This consists of accessing the register ra, a memory location

op, performing a logical and, writing the result, setting status

flags (some were elided for brevity), and finally branching

to the next instruction. We note the andBit operation is

generic in the size of the input; this allows significant code

reuse and static checking that operands are well-formed.

QIL: Quameleon Intermediate Language
QIL is an intermediate language designed to capture the

semantics of binary programs for a wide variety of architec-

tures while having an easily formalized semantics.

We designed QIL from scratch so we could provide useful

programming language features to ensure strong static type

guarantees, provide ease of analysis, and facilitate code trans-

formations. One interesting feature of QIL is its bit vector

abstraction which provides statically typed bit vector fields

and widths for any bit width. This allows greater code reuse

in contrast with other ILs which have separate instructions

for different bit widths.

We provide three encodings of QIL:

1. a nominal encoding useful for optimization;

2. finally tagless encoding good for code generation; and

3. de Bruijn index encoding to more easily translate repre-

sentations.

We also support JSON output for our angr bridge and a pretty-

printed, human-readable syntax as shown in Listing 2.

At present QIL does not support non-sequential semantics

and self-modifying programs. We discuss these limitations

in the future work section.

Overview of Syntactic Elements
QIL has several fundamental type families which can be

referenced by a variable

• Values: these represent bit vectors. In QIL’s type system

Values are parameterized by a natural number of bits.

• Locations: these represent assignable locations where to

which values can be read and written. In QIL’s type sys-

tem Locations are parameterized by a natural number

which denotes the size of Values storable there.
• Labels: these represent program locations and can be

jumped to.

• RamSelectors: these represent families of Locations in-

dexed by Values.
• JoinPoints: these represent a local continuation which

can be jumped to. Unlike a Label, which denotes a global
location, a JoinPoints type is parameterized by a list of

argument types.

From these, we form instructions, blocks, and programs. A

QIL program consists of four pieces of information:

1. a globally defined code-pointer size (a natural number)

2. a sequence of allocation instructions defining registers

and memories

3. a sequence of blocks, each binding a label

4. optionally, a label called the “entry point.”

Blocks bind labels one of two ways. Registered blocks can be

used for static jumps (with an associated label) or dynamic

Quameleon: A Lifter and Intermediate Language for Binary Analysis SpISA ’19, September 13, 2019, Portland, OR

Listing 1. A fragment of M6800 assembly.

LDA A #15 ; A <- 0xF

AND A $40 ; A <- A & [0x40]

jumps (with an associated address). Unregistered blocks only

have a label.

Generally, in a lifter, a registered block is (at least initially)

generated for each instruction. Optimization may then gen-

erate additional blocks or combine blocks via inlining.

In either kind of block, the body of the block consists of a

sequence of instructions which may bind variables. Each

variable is bound exactly once in the style of static single
assignment (SSA). Unlike many SSA ILs, there are no “labels”

or “ϕ nodes” inside a QIL block. Instead, block-local control

is achieved by way of structured control flow consisting of:

• boolean (if) and multiway (case) conditional statements

• let-bound join points (which take parameters such as

functions in high-level languages).

Overview of Semantics
A QIL program takes as its denotation a labeled transition

system where the labels on transitions are sequences of well-

typed reads and writes to some set of locations.

As is standard, we think of the abstract state of the program’s

denotation as coming from two parts: program locations (that

is, the QIL labels bound by blocks) and the other state, the

latter of which is described by the variables (RAM, registers,

etc.) defined in the allocation section of the QIL program.

By computing the denotation of each block body, we can

easily compute the denotation of the entire program. Specif-

ically, we start with, as states, the Cartesian product of the

set of labels and the denotation of the domain of memory

(both RAM and registers), and then for every element of the

denotation of a block we add the appropriate transitions,

adding intermediate steps as necessary.

Note that, crucially, while QIL blocks can be non-

deterministic, they must terminate. No fancy denotational

techniques are needed to account for non-termination, as it

exists only at the top-level of the semantics (the transition

system).

AWorked Example Program
In order to demonstrate the QIL language, consider the frag-

ment of M6800 assembly language in Listing 1 which takes

the bitwise and of 0xF and the byte at location 0x40.

The pretty-printed QIL is given in Listing 2. Note that this

program is unoptimized: after sufficient optimization this

program would reduce to a precomputed write since the

program has no inputs.

Listing 2. A worked QIL example.

1 code_ptr_size: S16

2 alloc_part: {

3 &1 := alloc[S8] // Register A

4 // ... Other registers

5 &6 := alloc[S1] // Carry Flag

6 // ... Other status flags

7 MEM(1) := buildMemory[S16 S8]

8 }

9 code_part: {

10 @1 := block { }

11 @2 := registered_block "AND A (DIR8 64)" 2 {

12 %1 := readLoc[S8] &1 // read Register A

13 &12 := MEM (1)[S16].BV[S8](40)

14 %2 := readLoc[S8] &12

15 %3 := AndBit[S8] %1 %2

16 writeLoc[S8] &1 %3 // set Register A

17 branch @1

18 }

19 @3 := registered_block "LDA A (IMM8 15)" 0 {

20 writeLoc[S8] &1 BV[S8](f) // set Register A

21 branch @2

22 }

23 @4 := block {

24 branch @3

25 }

26 }

27 entry_point: @4

Line 1 indicates this program uses 16-bit values for dynamic

jumps. Lines 2–8 set up the memory used by this machine.

For instance, Line 3 creates an 8-bit assignable memory loca-

tion (i.e. a register) and associates it with the name &1. In the

QIL syntax all location variables start with an ampersand

and the comment Register A is just metadata.

Our M6800 lifter ends up generating blocks in the opposite

order from the instructions. As such, the initial instruction,

set as the entry point, has the label @4. Next, the program
branches to the label @3. Line 20 states the location &1 gets
the value 15 (0xF), and its size is 8 bits. The other poten-

tially confusing line is 13, which reads 8 bits from the 16-bit

memory location 64 (hex 0x40).

Optimizations
Quameleon provides several optimization passes with the

goal of decreasing code size and increasing analyzability.

One example is constant folding, which consists of replacing

a variable with its value when that value can be statically

known. Other optimizations we have implemented include

unreachable code elimination and inlining.

Analysis Backends
We have currently implemented two analysis backends.

1. A bridge between Quameleon and angr. This allows load-

ing QIL programs so that QIL appears as simply another

binary format. We include metadata such as the register

names inside this JSON to provide similar convenience

to existing ISAs.

SpISA ’19, September 13, 2019, Portland, OR Johnson-Freyd, Pollard, Aytac, Duckworth, Carson, Hulette, Harrison

2. Concrete execution. This backend provides the ability to

interpret QIL programs; i.e. an emulator for supported

architectures. Our general purpose interpreter takes a set

of call-backs for resolving I/O effects, early termination,

or non-deterministic calls. As such, we provide a unified

backend for both pure and side-effectful interpretation

strategies.

Related Work
Related work includes analysis tools such as BAP (Binary

Analysis Platform) [2], B2R2 [4], and angr [8].

In particular, angr has a large user community and a substan-

tial degree of completeness. Unfortunately, neither angr nor

BAP supported the ISAs we needed. We note the differing

design goals of other tools to motivate the overall design of

Quameleon.

• Our goal is to generalize both frontends and backends

for binaries which we know at some level the expected

behavior, but require high assurance of correctness; this

contrasts with angr’s design goals of being primarily for

reverse engineering adversarial binaries using symbolic

execution and heuristics.

• Both angr and BAP use ILs based on mutable temporaries

by default. Instead, we wanted a static single assignment

(SSA)-based IL. LLVM [5] uses SSA, but is aimed for

optimization rather than binary analysis.

Additionally, SAIL [1] and K [7] are domain specific lan-

guages used to specify ISA semantics which have a similar

goal of generating emulators and analysis backends from a

ISA specifications.

Future Work
The first desired feature would be to support self-modifying

binaries. Our idea to the end is to extend QIL with an (op-

tional) special block handling branching to values not known

until runtime, wherein QIL could look up the location in

memory, decode its contents to an instruction, then evaluate

that instruction.

We also wish to add additional backends as listed in Fig. 1

such as Hoare Logic-style predicate transformers and ab-

stract interpretation.

Lastly, QIL does not include floating point instructions unlike

many other ILs. We are exploring what it would take to

develop a formal theory of all floating point representations

to be used in QIL that would be generic enough for pre-IEEE-

754 floating point formats.

Conclusion
We presented Quameleon, a tool for sound binary analysis

designed from the beginning to be easily extended to dif-

ferent architectures and types of analysis. We accomplish

this by lifting our input ISAs into an intermediate language

QIL, an SSA-based intermediate language. QIL programs are

amenable to analysis because they make explicit all effects of

an assembly language program and the small core language

facilitates our effort to formalize QIL in a proof assistant

such as Coq.

Another result of extensibility being a primary design goal is

the ability to extend to old ISAs; languages with non-byte ad-

dressable memory, pre-IEEE-754 floating point arithmetic, or

requiring cycle-accurate emulation can all be added without

modification QIL’s core.

Acknowledgments
Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology & Engineer-

ing Solutions of Sandia, LLC, a wholly owned subsidiary

of Honeywell International Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration under

contract DE-NA0003525.

References
[1] Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K. E., Nor-

ton, R. M., Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S.,

Stark, I., Krishnaswami, N., and Sewell, P. ISA semantics for armv8-

a, risc-v, and CHERI-MIPS. Proceedings of the ACM on Programming
Languages 3, POPL (Jan. 2019), 71:1–71:31.

[2] Brumley, D., Jager, I., Avgerinos, T., and Schwartz, E. J. Bap: A bi-

nary analysis platform. In Computer Aided Verification (CAV) (Snowbird,
UT, USA, July 2011), G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806

of LNCS, Springer Berlin Heidelberg, pp. 463–469.

[3] Hex-Rays. The ida disassembler and debugger, 2018. Available at

https://www.hex-rays.com.

[4] Jung, M., Kim, S., Han, H., Choi, J., and Cha, S. K. B2R2: Building

an efficient front-end for binary analysis. In Proceedings of the NDSS
Workshop on Binary Analysis Research (2019).

[5] Lattner, C., andAdve, V. LLVM: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization (Palo Alto, CA, USA, Mar. 2004), CGO ’04, IEEE

Computer Society, pp. 75–.

[6] National Security Agency Research Directorate. Ghidra: A

software reverse engineering (sre) framework, 2019. Available at

https://www.ghidra-sre.org.

[7] Roşu, G., and Şerbănuţă, T. F. An overview of the K semantic frame-

work. Journal of Logic and Algebraic Programming 79, 6 (2010), 397–434.
[8] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M.,

Dutcher, A., Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna,

G. SoK: (State of) The Art of War: Offensive Techniques in Binary

Analysis. In IEEE Symposium on Security and Privacy (SP) (May 2016),

pp. 138–157.

https://www.ghidra-sre.org

	Abstract
	Introduction
	Disassembly and Lifting
	Lifting an Instruction

	QIL: Quameleon Intermediate Language
	Overview of Syntactic Elements
	Overview of Semantics
	A Worked Example Program

	Optimizations
	Analysis Backends
	Related Work
	Future Work
	Conclusion
	Acknowledgments
	References

