
Symbolic Execution of x86 assembly in1

Isabelle/HOL2

Freek Verbeek3

Virginia Tech, USA4

freek@vt.edu5

Abhijith Bharadwaj6

Virginia Tech, USA7

Joshua A. Bockenek8

Virginia Tech, USA9

Ian Roessle10

Joint Artificial Intelligence Center, Washington DC, US11

Binoy Ravindran12

Virginia Tech, USA13

Abstract14

In this short paper we present progress on a symbolic execution engine for x86 assembly in the15

Isabelle/HOL theorem prover. We discuss the two main challenges tackled: 1.) how to leverage reli-16

able machine-learned semantics of x86 assembly instructions, and 2.) how to generate preconditions17

that allow deterministic symbolic execution of basic blocks. We end with a discussion on how we18

intend to use our symbolic execution engine.19

2012 ACM Subject Classification Software and its engineering → Formal methods20

Keywords and phrases Symbolic Execution, x86-64 assembly, Theorem Proving21

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2322

Acknowledgements This work is supported in part by ONR under grant N00014-17-1-2297 and23

NAVSEA/NEEC grant N00174-16-C-0018.24

1 Introduction25

Symbolic execution is a powerful technique in program verification and analysis [7, 2]. It can26

be used to explore an overapproximation of all possible paths. In case of assembly code, it27

can also be used to summarize state changes induced by sequences of individual assembly28

instructions. In assembly, one will typically find series of instructions whose net effect can be29

described much more succinctly than by using the semantics of the individual instructions.30

As example, consider the x86 assembly sequence push rbp; pop rbp. The net effect is only31

a single write into memory (register rbp is written to the top of the stack frame). The32

succinct output of symbolic execution can be the base for further for formal verification.33

This short paper describes our progress in building a formal symbolic execution engine in34

Isabelle/HOL [5] for x86-64. Our symbolic execution engine targets basic blocks, i.e., blocks35

without unconditional jumps. We specifically deal with the following two challenges:36

The semantics of x86 are typically highly complicated and its CISC nature requires37

formal semantics for many instructions. The Intel manuals provide documentation, but38

translating these into a formal model is error-prone and requires human interpretation.39

We use Strata [4] to embed highly trustworthy machine-learned instruction semantics40

into Isabelle/HOL. The challenge is that, since these semantics are not manually written41

but machine-learned, they are typically not in a form suitable for formal verification. We42

© Freek Verbeek;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:freek@vt.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Symbolic Execution of x86 assembly in Isabelle/HOL

thus provide manually written presimplified semantics and prove equivalence between our43

manually written semantics and the machine-learned version.44

Once each instruction in a block has been given semantics, symbolic execution amounts45

to aggregating these individual state changes. The objective is that one basic block has a46

deterministic aggregated state change, since each individual instruction is deterministic.47

However, since all values are symbolic, addresses are typically symbolic as well. This48

leads to the memory aliasing problem: if two values are written to memory to symbolic49

addresses a0 and a1, it is possible that they overwrite each other, overlap each other,50

or are separate. We generate preconditions under which symbolic execution becomes51

deterministic for basic blocks.52

2 Using machine-learned semantics53

Strata uses a stochastic search methodology to derive instruction semantics from an x86-54

64 machine. The search space used to learn instructions consists of 62 hard-coded base55

instructions. These base instructions cover bit-vector operations such as integer arithmetic,56

bitwise operations, data movement, floating point operations, splitting and combining of57

registers, and setting and clearing of status flags. The base set covers fundamental operations,58

serving as building blocks for the more complex instructions. Ultimately, semantics are59

learned as assignments of bit-vector formula’s to state parts.60

In [6], we describe a methodology for generalizing the output of Strata, and lifting it into61

the Isabelle/HOL theorem prover. As an example, we consider the instruction variant sub62

r32 m32, which subtracts the value stored in the 32-bit memory location from the value63

stored in the 32-bit register. Note that in x86-64, a 32-bit register is actually the lower part64

of a 64-bit register. This instruction thus actually reads from and writes to a 64-bit register.65

We also show two of the flags: the zero flag and the carry flag.66

r64 := 0
32

^〈31, 0〉(0
1

^¬m32 + 1
33

+ 0
1

^〈31, 0〉(r64 ))

ZF := 〈31, 0〉(0
1

^¬m32 + 1
33

+ 0
1

^〈31, 0〉(r64 )) == 0
32

CF := 〈32, 32〉(0
1

^¬m32 + 1
33

+ 0
1

^〈31, 0〉(r64 )) == 1
32

67

It can be seen that the semantics are expressed in base instructions such as concatenation68

(^), taking a sub-bit-vector (〈31, 0〉), negation, addition, constants (1
33

means “the constant69

1 in 33-bit mode) and equality. These semantics, however, also seem overly complicated. In70

order to express the semantics of the zero flag, for example, the input values are extended to71

33-bit mode, after which a two’s complement subtraction happens. Then the lower 32 bits of72

33 are compared to 0. Humanly defined semantics would simply state r32 == m32, i.e., the73

zero flag after subtraction is set when its inputs are equal. We thus defined the following74

manually written presimplified semantics:75

76

r64 := zextend(〈31, 0〉(r64 )−m32 )
ZF := 〈31, 0〉r64 = m32
CF := 〈31, 0〉r64 < m32

77

78

These two semantics are formally proven to be equivalent. We have presimplified semantics79

for 84 instruction mnemonics, where each mnemonic has several variants. For example, sub80

is a mnemonic with 8, 16, 32 and 64 bit variants, and each of these variants has further81

variation in whether its operands are memory or registers. Not all semantics come from82

Strata, e.g., the shift instructions have been defined manually. More details can be found83

in [6].84



Verbeek et al. 23:3

3 Determinizing Symbolic Execution85

Consider the following x86 assembly sequence:86

mov QWORD PTR [rsp-16], 187

mov DWORD PTR [rsp-24], 288

mov rax, QWORD PTR [rsp-16]89

The first instruction moves the quad (8 byte) word 1 to memory location [rsp-16]. The90

second moves the 4 byte word 2 to memory location [rsp-24]. The third moves 8 bytes91

from memory location [rsp-16] into the RAX register. Symbolic execution should produce92

the following:93

s′ = sL[rsp− 16] := 1
64

, [rsp− 24] := 2
32

, RAX := 1
64

M94

That is, the new state s′ is the result of three state changes with respect to the input state s.95

For sake of presentation, the instruction pointer is omitted. We illustrate that in order to96

get this seemingly trivial result, we require both extra preconditions and solving of linear97

equations.98

Symbolic execution starts in state s and sequentially applies the presimplified semantics99

of the current instruction. After execution of the first instruction, the current symbolic state100

is:101

s′ = sL[rsp− 16] := 1
64

M102

Now, in order to execute the second instruction, it needs to be established that the two103

regions written to are separate. If they are separate, the next symbolic state is equal to:104

s′ = sL[rsp− 16] := 1
64

, [rsp− 24] := 2
32

M105

However, were they to overlap, then a different symbolic state would be produced.106

To know whether they are separate, the following linear equation must be solved:107

rsp− 16 + 8 ≤ rsp− 24 ∨ rsp− 24 + 4 ≤ rsp− 16108

This seems a trivial linear equation, since rsp − 20 ≤ rsp − 16. However, the addresses109

are computed in 64-bit mode, i.e., the address computations are modulo 264. Thus, the110

equation is not true: if for example rsp = 16, then rsp− 20 > rsp− 16. When the extra111

precondition rsp ≥ 20 is assumed, the linear equation can be solved and we can complete112

symbolic execution deterministically.113

Our solution to this problem is as follows:114

1. For each basic block, identify the accessed regions;115

2. For each region, generate the preconditions necessary to prevent under- and overflow;116

3. For each pair of two regions, precompute whether they are separate, and whether they117

are enclosed in each other;118

4. For each basic block, generate a lemma in Isabelle/HOL with as assumptions the generated119

preconditions and the precomputed relations.120

Step 3 uses the Z3 theorem prover [3]: for each pair of regions, linear equations are121

generated that model separation and enclosure. This also prevents a vacuous truth: since122

the assumptions are generated, we need to make sure that they are internally consistent. Z3123

ensures that we cannot add an assumption such as “[rsp−16, 8] is separate from [rsp−12, 8]”.124

Note that in the given example, the basic block is deterministic. In general, that is not125

necessarily the case, e.g., in case of aliasing. Consider the following example:126

CVIT 2016



23:4 Symbolic Execution of x86 assembly in Isabelle/HOL

mov QWORD PTR [rdi], 1127

mov DWORD PTR [rsi], 2128

mov rax, QWORD PTR [rdi]129

Symbolic execution cannot produce a deterministic value for register RAX, since it depends130

on the values of registers RDI and RSI. In this case, the Isabelle symbolic execution will131

fail, and the user manually needs to insert as assumption that, e.g., [RDI, 8] is separate from132

[RSI, 4]. More details can be found in [1].133

4 Use Cases of Formal Symbolic Execution134

As conclusion, we discuss some use cases of formal symbolic execution.135

Combine with CFG extraction As discussed, we do symbolic execution per basic block.136

The CFG dictates how these basic blocks are tied together. We aim to combine a137

formally proven correct CFG extraction tool with our symbolic execution engine to get a138

summarized – but correct – representation of the binary in the theorem prover.139

Formal Proofs of Memory Usage In [1], we use the symbolic execution engine to reason140

over the memory read from and written to by functions in binaries. We generate Floyd141

invariants, that allow reasoning per basic block to be used to reason over a function as142

a whole. We have applied this to 71 functions of the binary of HermitCore, and dealt143

with functions with loops, recursion, and pointer arguments. The methodology requires144

interactive theorem proving, and we aim to make this methodology more automatable to145

achieve better scalability.146

Formal Proofs of Soundness of Randomizers Binary randomization is a technique used147

to prevent return-oriented-programming attacks. A randomizer rewrites basic blocks148

to eliminate so-called gadgets, i.e., byte-sequences that can be interpreted as a ret149

instruction. Analysis of these randomizers typically focuses on security properties, and150

less on soundness. Using formal symbolic execution, we intend to compare the semantics151

of a binary with the semantics of its randomized version, and thereby prove soundness.152

References153

1 Joshua A. Bockenek, Freek Verbeek, Peter Lammich, and Binoy Ravindran. Formal verification154

of memory preservation of x86-64 binaries. In International Conference on Computer Safety,155

Reliability and Security (SAFECOMP’19), 2019. To be published.156

2 Eric Cheng. Binary Analysis and Symbolic Execution with angr. PhD thesis, The MITRE157

Corporation, 2016.158

3 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International159

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages160

337–340. Springer, 2008.161

4 Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified synthesis: automatically162

learning the x86-64 instruction set. In ACM SIGPLAN Notices, volume 51, pages 237–250.163

ACM, 2016.164

5 Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant for165

higher-order logic, volume 2283. Springer Science & Business Media, 2002.166

6 Ian Roessle, Freek Verbeek, and Binoy Ravindran. Formally verified big step semantics out of167

x86-64 binaries. In Proceedings of CPP’19, pages 181–195. ACM, 2019.168

7 Teodor Stoenescu, Alin Stefanescu, Sorina Predut, and Florentin Ipate. River: A binary169

analysis framework using symbolic execution and reversible x86 instructions. In International170

Symposium on Formal Methods, pages 779–785. Springer, 2016.171

172


	Introduction
	Using machine-learned semantics
	Determinizing Symbolic Execution
	Use Cases of Formal Symbolic Execution

