
Heterogeneous Theorem Proving,
Certification, and Integrated Automation

John Harrison
Intel Corporation

PxTP and PSATTT workshops, CADE 2011
Wroclaw
1st August 2011 (14:00–15:00)

0



Table of contents

• Do we need to integrate multiple proof tools?

• Verification at Intel: integrating formal methods

• Formalization of mathematics: integrating computational tools

• Computation and result certification

• Towards truly integrated automation

1



Do we need to integrate multiple proof tools?

Yes, current applications in both formal verification and the
formalization of mathematics most naturally draw on a wide variety of
tools.

• Formal verification uses a wide range of tools including SAT and
SMT solvers, model checkers and theorem provers

• Some proofs in mathematics use linear programming, nonlinear
optimization, computer algebra systems and other more ad hoc
algorithms

• May want to combine work done in different theorem provers,
e.g. ACL2, Coq, HOL, Isabelle.

2



Diversity at Intel

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

• Microcode

• Firmware

• Protocols

• Software

3



A diversity of activities

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

• Microcode

• Firmware

• Protocols

• Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.

4



A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

• Propositional tautology/equivalence checking (FEV)

• Symbolic simulation

• Symbolic trajectory evaluation (STE)

• Temporal logic model checking

• Combined decision procedures (SMT)

• First order automated theorem proving

• Interactive theorem proving

Integrating all these is a challenge!

5



Layers of verification

If we want to verify from the level of software down to the transistors,
then it’s useful to identify and specify intermediate layers.

• Implement high-level floating-point algorithm assuming addition
works correctly.

• Implement a cache coherence protocol assuming that the
abstract protocol ensures coherence.

Many similar ideas all over computing: protocol stack, virtual
machines etc.

If this clean separation starts to break down, we may face much
worse verification problems. . .

Very often, different tools are better suited to different layers.

6



Example 1: floating-point algorithms

gate-level description

fma correct

sin correct

6

6

7



Example 1: floating-point algorithms

Formal proof of sin function assuming fma is correct:

Harrison, Formal verification of floating point trigonometric
functions, FMCAD 2000.

Formal proof of fma correctness at the gate level:

Slobodova, Challenges for Formal Verification in Industrial
Setting, FMCAD 2007.

Yet these verifications were done in different proof systems and do
not even share a common fma specification.

8



Example 2: protocol verification

Many successes with Chou-Mannava-Park method for parametrized
systems:

Chou, Mannava and Park: A simple method for
parameterized verification of cache coherence protocols,
FMCAD 2004.

Krstic, Parametrized System Verification with Guard
Strengthening and Parameter Abstraction, AVIS 2005.

Talupur, Krstic, O’Leary and Tuttle, Parametric Verification of
Industrial Strength Cache Coherence Protocols, DCC 2008.

Bingham, Automatic non-interference lemmas for
parameterized model checking, FMCAD 2008.

Talupur and Tuttle, Going with the Flow: Parameterized
Verification Using Message Flows, FMCAD 2008.

9



Example 2: protocol verification

The CMP method applies to parametrized systems with N equivalent
replicated components, so the state space involves some Cartesian
product

Σ = Σ0 ×

N times
︷ ︸︸ ︷

Σ1 × · · · × Σ1

The method abstracts the system to a finite-state one and then uses
a conventional model checker to prove the abstraction.

Currently, the abstraction is done by ad hoc programs, even though it
would be desirable to encompass it all in a formal proof system.

10



Pure mathematics: the Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls in
ordinary 3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

Hales, working with Ferguson, arrived at a proof in 1998:

• 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

• 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .

11



The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future, because
they have run out of energy to devote to the problem. This is
not what I had hoped for.

Fejes Toth thinks that this situation will occur more and more
often in mathematics. He says it is similar to the situation in
experimental science — other scientists acting as referees
can’t certify the correctness of an experiment, they can only
subject the paper to consistency checks. He thinks that the
mathematical community will have to get used to this state of
affairs.”

12



The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly lacking
in clarity and finality.

As a result of this experience, the journal changed its editorial policy
on computer proof so that it will no longer even try to check the
correctness of computer code.

Dissatisfied with this state of affairs, Hales initiated a project called
Flyspeck to completely formalize the proof.

13



Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more complex
than a simple hope of removing residual doubt from the
minds of few referees. Indeed, I see formal methods as
fundamental to the long-term growth of mathematics. (Hales,
The Kepler Conjecture)

The formalization effort has been running for a few years now with a
significant group of people involved, some doing their PhD on
Flyspeck-related formalization.

In parallel, Hales has simplified the non-formal proof using ideas
from Marchal, significantly cutting down on the formalization work.

14



Flyspeck: current status

• Almost all the ordinary mathematics has been formalized in HOL
Light: Euclidean geometry, measure theory, hypermaps, fans,
results on packings.

• Many of the linear programs have been verified in Isabelle/HOL
by Steven Obua. Alexey Solovyev has recently developed a
faster HOL Light formalization.

• The graph enumeration process has been verified (and improved
in the process) by Tobias Nipkow in Isabelle/HOL

• An approach to formalizing the nonlinear programming based on
Bernstein polynomials has been developed by Roland Zumkeller,
initially using Coq.

15



Flyspeck: the challenges

Besides its sheer size, a key challenge of the Flyspeck proof is the
use of multiple computer-based methods together with a traditional
paper proof.

The Flyspeck project seems to have solved most of these integration
problems, but the nonlinear optimization part remains difficult.

Moreover, the successful use of many different proof systems in
working on the project has led to new issues around the integration
of different interactive theorem provers.

16



Sharing results or sharing proofs?

A key dichotomy is whether we want to simply:

• Transfer results, effectively assuming the soundness of tools

• Transfer proofs or other ‘certificates’ and actually check them in a
systematic way.

The first is general speaking easier and still useful. The latter gives
better assurance and is the approach I, and probably most people
here, are interested in.

17



Matching semantics

Even for the relatively easy case of transferring results, we need a
precise match between the semantics of the tools.

In the case of importing a tool in some specific mathematical domain
(e.g. an integer programming package) into a general theorem
prover, this is usually pretty easy, though there can be subtle corners.

It becomes much more complex and difficult if we want to transfer
results between general mathematical frameworks with significantly
different foundations.

18



Interfaces between interactive provers

Transferring results:

• hol90 → Nuprl: Howe and Felty 1997

• ACL2 → HOL4: Gordon, Hunt, Kaufmann & Reynolds 2006

Transferring proofs:

• HOL4 → Isabelle/HOL: Skalberg 2006

• HOL Light → Isabelle/HOL: Obua 2006

• Isabelle/HOL → HOL Light: McLaughlin 2006

• HOL Light → Coq: Keller 2009

More comprehensive solutions for exchange between HOL-like
provers include work by Hurd et al. (OpenTheory) and Adams
(importing into HOL Zero).

19



Pure logic: SAT

SAT is particularly important nowadays given the power of modern
SAT solvers and the fact that they get used as components in other
systems (QBF solvers, bounded model checkers, . . . )

For satisfiable problems it’s generally easy to get a satisfying
valuation out of a SAT solver and check it relatively efficiently.

For unsatisfiable problems, some SAT checkers are capable of
emitting a resolution proof, and this can be checked.

Weber and Amjad, Efficiently Checking Propositional
Refutations in HOL Theorem Provers

This is feasible, though depending on the problem it can still take
rather more time to check the solution than the SAT solver took to
find it. Usually not too much longer, though.

20



Pure logic: FOL

In principle, relatively easy: often much faster to check a proof even
in a slow prover than to perform the extensive search that led to it.

Even ‘internal’ automated provers like MESON in HOL Light and
blast in Isabelle have long used a separate search phase.

Main difficulties of interfacing to mainstream ATP systems are:

• Getting a sufficiently explicit proof out of certain provers in the
first place. For example, Vampire is generally more powerful than
prover9, but it’s much easier to get proofs from the latter.

• When formulating a problem in a higher-order polymorphically
typed setting, making a suitable reduction to the monomorphic
first-order logic supported by most ATPs.

Much more detail in Jasmin Blanchette’s talk . . .

21



Pure logic: QBF

Quantified Boolean formulas are a useful representation for some
classes of problem. There have been successful projects to check
traces from QBF provers:

• Invalid QBF formulas: Weber 2010

• Valid QBF formulas: Kuncar 2011, Kumar and Weber 2011

While these work, the process of checking incurs a sometimes
dramatic slowdown, often several orders of magnitude.

These setups also seem very sensitive to the implementation details
of the target prover (e.g. name carrying versus de Bruijn terms).

22



Arithmetical theories: linear arithmetic

Generally works quite well for universal formulas over R or Q.

The key is Farkas’s Lemma, which implies that for any unsatisfiable
set of inequalities, there’s a linear combination of them that’s
‘obviously false’ like 1 < 0.

Alexey Solovyev’s highly optimized implementation of this is essential
for Flyspeck.

More challenging if we have (i) quantifier alternations, or (ii)
non-trivial use of a discrete structures like Z or N. (Simple tricks like
x < y → x + 1 6 y go some way.)

For example, there are implementations of Cooper’s algorithm inside
theorem provers, but none that can efficiently check traces from any
external tool.

23



Arithmetical theories: algebraically closed fields

Again, the universal theory is easiest, and this coincides with the
universal theory of fields or integral domains (when the characteristic
is fixed).

Using the Rabinowitsch trick p 6= 0 → ∃y. py − 1 = 0, we just need to
refute a conjunction of equations. Then we can appeal to the Hilbert
Nullstellensatz:

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · · + qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership.

24



Arithmetical theories: ideal membership

One can solve ideal membership problems using various methods,
e.g. linear algebra. But the most standard method is Gröbner bases,
which are implemented by many computer algebra systems.

Given polynomials p1(x), . . . , pk(x) and r(x), these can return
explicit cofactor polynomials qk(x) when they exist such that

q1(x) · p1(x) + · · · + qk(x) · pk(x) = r(x)

However, in contrast to Farkas’s Lemma, the cofactors are not just
numbers and can be huge expressions.

Often more efficient to use HOL Light’s simple internal
implementation of Gröbner bases than appeal to external tools.

However, can return the cofactors in more efficient forms using
shared subterms.

25



Arithmetical theories: universal theory of reals (1)

There is an analogous way of certifying universal formulas over R

using the Real Nullstellensatz, which involves sums of squares
(SOS):

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real closed
closed field have no common solution iff there are polynomials q1(x),
. . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · · + qk(x) · pk(x) + s1(x)2 + · · · + sm(x)2 = −1

The similar but more intricate Positivstellensatz generalizes this to
inequalities of all kinds.

26



Arithmetical theories: universal theory of reals (2)

The appropriate certificates can be found in practice via semidefinite
programming (SDP). For example
23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 > 0 or

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac > 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.

27



Other examples

There has been some research on at least the following:

• SMT: seems feasible to combine and generalize methods for
SAT and theories. Much current research, some reported at this
workshop.

• Explicit-state or BDD-based symbolic model checking: seems
hard to separately certify and emulation is slow.

• Computer algebra: some easy case like factorization, indefinite
integrals. Others like definite integrals are much harder.

Major research challenge: which algorithms lend themselves to this
kind of efficient checking? Which ones seem essentially not to?
Some analogies with the class NP.

28



Fully integrated automation?

Suppose we have many efficient decision procedures implemented
by external tools. How can we put them together?

Effectively combination methods like Nelson-Oppen and Shostak
solve this problem for quantifier-free theories.

But even mild extensions with quantifiers rapidly become
undecidable, such as linear integer arithmetic with one function
symbol, when we can characterize squaring:

(∀n.f(−n) = f(n))∧f(0) = 0∧(∀n.0 6 n ⇒ f(n+1) = f(n)+n+n+1)

and then multiplication by m = n · p ⇔ (n + p)2 = n2 + p2 + 2m

29



Quantifiers + theories

At present, we still seem to need human-driven interactive proof to
formulate lemmas that can be solved by automated tools and tie
them together.

One of the primary research problems in automated theorem proving
is to find a practically effective combination of quantifier and theory
reasoning.

We see this being approached from both sides:

• First-order provers are adding theory reasoning (SPASS+T)

• SMT solvers are improving their ability to instantiate quantifiers

Can sometimes exploit types to instantiate quantifiers systematically.

However, there is much active research on other heuristics that often
seem to work well in practice.

30



Conclusions

• There is a real need for combining different proof tools, for
applications both in formal verification and pure mathematics

• Effective exchange and checking of proofs between tools seems
to be the best way of ensuring soundness and intellectual
manageability of such connections.

• Several significant problems still seem hard to treat effectively
via a certification, including model checking state enumeration
and full quantifier elimination or general nonlinear optimization.

• The final challenge will probably lie in the effective combination
of a variety of certified techniques, which broadly involves the
combination of quantifier and theory reasoning.

31


