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From Principia to the
computer age



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously, and few mathematicians do it today.

But thanks to the rise of the computer, the actual formalization of
mathematics is attracting more interest.
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Formal proofs are difficult by hand

“my intellect never quite recovered from the strain of
writing [Principia Mathematica]. I have been ever since
definitely less capable of dealing with difficult
abstractions than I was before.” (Russell, Autobiography)



A formal proof from 1910

This is p379 of Whitehead and Russell’s Principia Mathematica.



Zooming in . . .



The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.
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A formal proof from 2010
let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

SUBGOAL_THEN ‘{p | prime p /\ p = 0} = {}‘ SUBST1_TAC THENL

[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN

MESON_TAC[PRIME_IMP_NZ];

ALL_TAC] THEN

REWRITE_TAC[SUM_CLAUSES; REAL_MUL_RZERO; REAL_SUB_RZERO] THEN

MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) *

sum {p | prime p /\ p <= n} (\p. log(&p) / &p) -

sum (1..n)

(\k. sum {p | prime p /\ p <= k} (\p. log(&p) / &p) *

((&k + &1) / log(&k + &1) - &k / log(&k)))) / (&n / log(&n))‘ THEN

CONJ_TAC THENL

[REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC ‘1‘ THEN SIMP_TAC[];

ALL_TAC] THEN

MATCH_MP_TAC REALLIM_TRANSFORM THEN

EXISTS_TAC

‘\n. ((&n + &1) / log(&n + &1) * log(&n) -

sum (1..n)

(\k. log(&k) * ((&k + &1) / log(&k + &1) - &k / log(&k)))) /

(&n / log(&n))‘ THEN

REWRITE_TAC[] THEN CONJ_TAC THENL

[REWRITE_TAC[REAL_ARITH

‘(a * x - s) / b - (a * x’ - s’) / b:real =

((s’ - s) - (x’ - x) * a) / b‘] THEN

REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_RDISTRIB] THEN

REWRITE_TAC[REAL_OF_NUM_ADD] THEN

MATCH_MP_TAC SUM_PARTIAL_LIMIT_ALT THEN



Zooming in . . .

At least the theorems are more substantial:

let PNT = prove

(‘((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))

---> &1) sequentially‘,

REWRITE_TAC[PNT_PARTIAL_SUMMATION] THEN

REWRITE_TAC[SUM_PARTIAL_PRE] THEN

REWRITE_TAC[GSYM REAL_OF_NUM_ADD; SUB_REFL; CONJUNCT1 LE] THEN

Though whether formal proofs have become more digestible to the
non-expert is perhaps questionable . . .
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Russell was an early fan of mechanized formal proof

Newell, Shaw and Simon in the 1950s developed a ‘Logic Theory
Machine’ program that could prove some of the theorems from
Principia Mathematica automatically.

“I am delighted to know that Principia Mathematica can
now be done by machinery [...] I am quite willing to
believe that everything in deductive logic can be done by
machinery. [...] I wish Whitehead and I had known of
this possibility before we wasted 10 years doing it by
hand.” [letter from Russell to Simon]

Newell and Simon’s paper on a more elegant proof of one result in
PM was rejected by JSL because it was co-authored by a machine.
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Formalization in current
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Formalization in current mathematics

Traditionally, we understand formalization to have two
components, corresponding to Leibniz’s characteristica universalis
and calculus ratiocinator.

I Express statements of theorems in a formal language, typically
in terms of primitive notions such as sets.

I Write proofs using a fixed set of formal inference rules, whose
correct form can be checked algorithmically.

Correctness of a formal proof is an objective question,
algorithmically checkable in principle.
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Mathematics is reduced to sets

The explication of mathematical concepts in terms of sets is now
quite widely accepted (see Bourbaki).

I A real number is a set of rational numbers . . .

I A Turing machine is a quintuple (Σ,A, . . .)

Statements in such terms are generally considered clearer and more
objective. (Consider pathological functions from real analysis . . . )



Symbolism is important

The use of symbolism in mathematics has been steadily increasing
over the centuries:

“[Symbols] have invariably been introduced to make
things easy. [. . . ] by the aid of symbolism, we can make
transitions in reasoning almost mechanically by the eye,
which otherwise would call into play the higher faculties
of the brain. [. . . ] Civilisation advances by extending the
number of important operations which can be performed
without thinking about them.” (Whitehead, An
Introduction to Mathematics)



Formalization is the key to rigour

Formalization now has a important conceptual role in principle:

“. . . the correctness of a mathematical text is verified by
comparing it, more or less explicitly, with the rules of a
formalized language.” (Bourbaki, Theory of Sets)
“A Mathematical proof is rigorous when it is (or could
be) written out in the first-order predicate language L(∈)
as a sequence of inferences from the axioms ZFC, each
inference made according to one of the stated rules.”
(Mac Lane, Mathematics: Form and Function)

What about in practice?



Mathematicians don’t use logical symbols

Variables were used in logic long before they appeared in
mathematics, but logical symbolism is rare in current mathematics.
Logical relationships are usually expressed in natural language, with
all its subtlety and ambiguity.
Logical symbols like ‘⇒’ and ‘∀’ are used ad hoc, mainly for their
abbreviatory effect.

“as far as the mathematical community is concerned
George Boole has lived in vain” (Dijkstra)



Mathematicians don’t do formal proofs . . .

The idea of actual formalization of mathematical proofs has not
been taken very seriously:

“this mechanical method of deducing some mathematical
theorems has no practical value because it is too
complicated in practice.” (Rasiowa and Sikorski, The
Mathematics of Metamathematics)
“[. . . ] the tiniest proof at the beginning of the Theory of
Sets would already require several hundreds of signs for
its complete formalization. [. . . ] formalized mathematics
cannot in practice be written down in full [. . . ] We shall
therefore very quickly abandon formalized mathematics”
(Bourbaki, Theory of Sets)



. . . Poincaré’s had a particular aversion . . .

I see in logistic only shackles for the inventor. It is no aid
to conciseness — far from it, and if twenty-seven
equations were necessary to establish that 1 is a number,
how many would be needed to prove a real theorem?
If we distinguish, with Whitehead, the individual x, the
class of which the only member is x and [...] the class of
which the only member is the class of which the only
member is x [...], do you think these distinctions, useful
as they may be, go far to quicken our pace?



Are proofs in doubt?

Mathematical proofs are subjected to peer review, but errors often
escape unnoticed.

“Professor Offord and I recently committed ourselves to
an odd mistake (Annals of Mathematics (2) 49, 923,
1.5). In formulating a proof a plus sign got omitted,
becoming in effect a multiplication sign. The resulting
false formula got accepted as a basis for the ensuing
fallacious argument. (In defence, the final result was
known to be true.)” (Littlewood, Miscellany)

A book by Lecat gave 130 pages of errors made by major
mathematicians up to 1900.
A similar book today would no doubt fill many volumes.



Even elegant textbook proofs can be wrong

“The second edition gives us the opportunity to present
this new version of our book: It contains three additional
chapters, substantial revisions and new proofs in several
others, as well as minor amendments and improvements,
many of them based on the suggestions we received. It
also misses one of the old chapters, about the “problem
of the thirteen spheres,” whose proof turned out to need
details that we couldn’t complete in a way that would
make it brief and elegant.” (Aigner and Ziegler, Proofs
from the Book)



Most doubtful informal proofs

What are the proofs where we do in practice worry about
correctness?

I Those that are just very long and involved. Classification of
finite simple groups, Seymour-Robertson graph minor theorem

I Those that involve extensive computer checking that cannot
in practice be verified by hand. Four-colour theorem, Hales’s
proof of the Kepler conjecture

I Those that are about very technical areas where complete
rigour is painful. Some branches of proof theory, formal
verification of hardware or software



Recent achievements in
formalization



Formalized theorems and libraries of mathematics

Interactive provers have been used to check quite non-trivial
results, albeit not close to today’s research frontiers, e.g.

I Jordan Curve Theorem — Tom Hales (HOL Light), Andrzej
Trybulec et al. (Mizar)

I Prime Number Theorem — Jeremy Avigad et al
(Isabelle/HOL), John Harrison (HOL Light)

I Dirichlet’s Theorem — John Harrison (HOL Light)

I First and second Cartan Theorems — Marco Maggesi et al
(HOL Light)

According to the Formalizing 100 theorems page, 88% of a list of
the ‘top 100 mathematical theorems’ have been formalized using
interactive theorem provers.
In the process, provers are building up ever-larger libraries of
pre-proved theorems that can be deployed in future proofs.
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The four-colour Theorem

Early history indicates fallibility of the traditional social process:

I Proof claimed by Kempe in 1879

I Flaw only point out in print by Heaywood in 1890

Later proof by Appel and Haken was apparently correct, but gave
rise to a new worry:

I How to assess the correctness of a proof where many explicit
configurations are checked by a computer program?

In 2005, Georges Gonthier formalized the entire proof in Coq,
making use of the “SSReflect” proof language and replacing
ad-hoc programs by evaluation within the logical kernel.
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The odd-order theorem

I The fact that every finite group of odd order is solvable was a
landmark result proved by Feit and Thompson in 1963.

I At the time it was one of the longest mathematical proofs
ever published, and it plays a major part in the full
classification of simple groups.

I In 2012 a team led by Georges Gonthier completed a
formalization in Coq, consisting of about 150, 000 lines of
code.

I A fairly extensive library of results in algebra was developed in
the process, including Galois theory and group characters.

I Uses the “SSReflect” proof language for Coq that was used in
the four-colour proof.
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The Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls
in ordinary 3-dimensional space has a higher packing density than
the obvious ‘cannonball’ arrangement.
Hales, working with Ferguson, arrived at a proof in 1998:

I 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

I 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .



The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the
problem. This is not what I had hoped for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”



The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly
lacking in clarity and finality.
As a result of this experience, the journal changed its editorial
policy on computer proof so that it will no longer even try to check
the correctness of computer code.
Dissatisfied with this state of affairs, Hales initiated a project
called Flyspeck to completely formalize the proof.



Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more
complex than a simple hope of removing residual doubt
from the minds of few referees. Indeed, I see formal
methods as fundamental to the long-term growth of
mathematics. (Hales, The Kepler Conjecture)

The formalization effort has been running for a few years now with
a significant group of people involved, some doing their PhD on
Flyspeck-related formalization.
In parallel, Hales has simplified the informal proof using ideas from
Marchal, significantly cutting down on the formalization work.



Flyspeck: current status

A large team effort led by Hales brought Flyspeck to completion on
10th August 2014:

I All the ordinary mathematics has been formalized in HOL
Light: Euclidean geometry, measure theory, hypermaps, fans,
results on packings.

I The graph enumeration process has been verified (and
improved in the process) by Tobias Nipkow in Isabelle/HOL.

I A highly optimized way of formally proving the linear
programming part in HOL Light has been developed by Alexey
Solovyev, following earlier work by Steven Obua.

I A method has been developed by Alexey Solovyev to prove all
the nonlinear optimization results, running in many parallel
sessions of HOL Light.
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Reliability of machine-checked
proof



Who checks the checker?

Formalization in a proof checker is often used to ensure correctness
of proofs:

I Pure mathematics — better than traditional social process

I Formal verification — often the only practical option

Why should we believe that these proofs are more reliable than
human proofs?
What if the underlying logic is inconsistent or the proof checker is
faulty?
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Who cares?

The robust view:

I Bugs in theorem provers do happen, but are unlikely to
produce apparent “proofs” of real results.

I Even the flakiest theorem provers are far more reliable than
most human hand proofs.

I Problems in specification and modelling are more likely.

I Nothing is ever 100% certain, and a foundational death spiral
adds little value.
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We care

The hawkish view:

I There has been at least one false “proof” of a real result.

I It’s unsatisfactory that we urge formality on others while
developing provers so casually.

I It should be beyond reasonable doubt that we do or don’t
have a formal proof.

I A quest for perfection is worthy, even if the goal is
unattainable.
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Prover architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

I de Bruijn approach — generate proofs that can be certified by
a simple, separate checker.

I LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.
But it is still non-trivial . . .



HOL Light

HOL Light is an extreme case of the LCF approach. The entire
critical core is 430 lines of code:

I 10 rather simple primitive inference rules

I 2 conservative definitional extension principles

I 3 mathematical axioms (infinity, extensionality, choice)

Everything, even arithmetic on numbers, is done by reduction to
the primitive basis.



Still...

HOL Light does contain subtle code, e.g.

I Variable renaming in substitution and type instantiation

I Treatment of polymorphic types in definitions

It would still be nice to verify the core . . .
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One fell swoop

We can imagine problems at several levels:

I The underlying logic is unsound or even inconsistent

I The formal definitions of the inference rules are incorrect

I The implementing code contains bugs

To eliminate all of these:

Formalize the intended set-theoretic semantics of the
logic and prove that the code implements inference rules
that are sound w.r.t. this semantics.
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The HOL in HOL project

Project to verify an implementation of HOL Light using HOL itself
(either HOL Light or HOL4) has recently been brought to
completion:

I Basic verification of approximation to HOL inside itself, minus
definitional principles (Harrison)

I Extension of semantics to cover definitional principles and
match actual code (Kumar)

I Implementation in CakeML with path to verified machine
code implementation (Kumar, Myreen, Owens, . . . )

However there are two apparent problems with ‘HOL in HOL’ . . .
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Logical objections

Taken too literally, our goal is impossible:

I Tarski: you cannot formalize the semantics of HOL in itself

I Gödel: you cannot prove the consistency of HOL in itself,
unless it is in fact inconsistent

Actually prove two slightly different statements:

I HOL ` Con(HOL− {∞})
I HOL + I ` Con(HOL).
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Other uses of formal proofs?

This perhaps goes back to Kreisel’s question:

What more do we know if we have proved a theorem by
restricted means than if we merely know that it is true?

Possible applications of formal proofs?

I Extracting constructive information or computational content
(this was Kreisel’s answer)

I Use in education to provide precise explicit proofs with full
detail or provide practice in formal reasoning.

I Semantically well-founded corpus of mathematics for search,
machine learning, sharing . . .

I . . . ?
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Sharing results between interactive provers

At the very least, we might hope to be able to share results
between (similar?) interactive theorem provers:

I hol90 → Nuprl: Howe and Felty 1997

I ACL2 → hol90: Staples 1999

I ACL2 → HOL4: Gordon, Hunt, Kaufmann & Reynolds 2006
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Translating proofs between interactive provers

More interesting and foundational satisfying is to translate proofs:

I hol90 → Coq: Denney 2000

I hol90 → NuPRL: Naumov, Stehr and Meseguer 2001

I HOL4 → Isabelle/HOL: Skalberg 2006

I HOL Light → Isabelle/HOL: Obua 2006

I Isabelle/HOL → HOL Light: McLaughlin 2006

I HOL Light → Coq: Keller 2009
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More comprehensive sharing

There are at least two major projects that allow sharing between
HOL-like systems

I OpenTheory (Hurd) — a general framework designed to
support the transfer of theorems and proofs between HOL
family provers

I HOL Zero (Adams) — simple and transparent version of HOL
designed as a vehicle for proof import and checking with
importers from other HOLs.

More in the spirit of the original QED vision is the Logosphere
project, which uses the Twelf logical framework as the common
‘metalogic’:
http://www.logosphere.org
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Using formal mathematics for machine learning

If we look at many AI fields we see a common recent trend:

Use general machine learning trained on huge datasets in
preference to hand-crafted algorithms.

Even though there has been extensive work on ATP for 60 years,
with strong links to AI research, there has been surprisingly little
such work in using machine learning in theorem proving.
Finally, mainly thanks to Josef Urban, there has been an explosion
of interest in this area.
Paradoxically, learning benefits from the large formal libraries
associated with interactive theorem provers, even though the more
natural ‘home’ might seem to be automated theorem proving.
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Machine learning and ATP on Flyspeck

First work reported on the Flyspeck corpus:

Cezary Kaliszyk and Josef Urban, Learning-Assisted
Automated Reasoning with Flyspeck (2012).

Uses machine learning trained on the Flyspeck proofs to perform
premise selection (identify lemmas likely to be useful), in
conjunction with a battery of automated theorem proving tools.

It is shown that 39% of the 14185 theorems could be
proved in a push-button mode (without any high-level
advice and user interaction) in 30 seconds of real time on
a fourteen-CPU workstation.
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HOL(y)Hammer
This ‘HOL(y)Hammer’ framework can be used online as a way of
getting hints if you are stuck on a HOL Light proof:

http://colo12-c703.uibk.ac.at/hh/

It can sometimes find proofs that a human (this one, anyway)
missed

Theorem FACE OF POLYHEDRON POLYHEDRON states that
a face of a polyhedron [. . . ] is again a polyhedron. The
HOL Light proof takes 23 lines [. . . ] but a much simpler
proof was found by the AI/ATP automation, based on
[. . . ] the FACE OF STILLCONVEX theorem: a face t of
any convex set s is equal to the intersection of s with the
affine hull of t. To finish the proof, one needs just three
‘obvious’ facts: Every polyhedron is convex
(POLYHEDRON IMP CONVEX), the intersection of two
polyhedra is again a polyhedron (POLYHEDRON INTER),
and affine hull is always a polyhedron
(POLYHEDRON AFFINE HULL).

http://colo12-c703.uibk.ac.at/hh/
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Thank you!


