
Verifying the Verifier

John Harrison
Intel Corporation

WG 2.3 meeting

Niagara Falls

June 7, 2005

0

The purpose of verification

We can distinguish at least two conceptions of verification (extreme
points on a continuum):

• Locating subtle bugs

• Producing absolute correctness proofs

Assuming we’re interested in the latter, we need to take the
correctness of the verification tools pretty seriously.

I’ll talk about theorem provers, but similar remarks apply to model
checkers etc.

1

Building a correct theorem prover

There are two principal approaches to making sure the theorem
prover is correct:

• Verifying the code of the theorem prover itself (‘reflection’)

• Basing the system on a small kernel of critical code (‘LCF’)

This can be generalized to proving program correctness vs. checking
results (Blum...)

2

Reflection vs. LCF

Reflection sounds nice in principle, but there are few non-trivial
examples of its successful use.

No ‘industrial scale’ theorem prover has ever been verified. Still,
some more impressive applications of reflection are starting to
appear.

The LCF approach imposes some programming restrictions and
performance penalties, but has proven quite effective in practice.

3

HOL Light

HOL Light is an extreme case of the LCF ideology. The entire critical
core is 430 lines of code:

• 10 rather simple primitive inference rules

• 2 conservative definitional extension principles

• 3 mathematical axioms (infinity, extensionality, choice)

Everything, even arithmetic on numbers, is done by reduction to the
primitive basis.

4

Still...

HOL Light does contain subtle code, e.g.

• Variable renaming in substitution and type instantiation

• Treatment of polymorphic types in definitions

It would still be nice to verify the core in some sense. The ideal
would be:

Formalize the intended set-theoretic semantics of the logic
and prove that the code implements inference rules that are
sound w.r.t. this semantics.

This deals with the logic and its implementation in one fell swoop.

5

HOL in HOL

We chose to verify HOL using itself — after all, it’s a powerful
theorem prover and we know it well.

Circular reasoning? At least the proof can be logged and checked in
HOL-4 or Isabelle/HOL.

Logical objections:

• Tarski: you cannot formalize the semantics of HOL in itself

• Gödel: you cannot prove the consistency of HOL in itself, unless
it is in fact inconsistent

Actually we aim to prove HOL ⊢ Con(HOL − {Inf}) and
HOL + I ⊢ Con(HOL).

6

Set-theoretic universe

We need a universe of sets containing models for all the types built
up by ‘→’ from ‘bool ’ and ‘ind ’.

|ind | < |I|

∀S. |S| < |I| ⇒ |℘(S)| < |I|

If we jetisson the axiom of infinity, we can prove the existence of
such a set in plain HOL.

If we want to prove the consistency of full HOL, we add the
analogous statement as an axiom.

The proofs are identical in all other respects.

7

Syntax of HOL

We map the OCaml definitions of the core logical notions into HOL
(derived) type definitions.

type term = Var of string * hol_type

| Const of string * hol_type

| Comb of term * term
| Abs of term * term

We slightly mangle the syntax of abstractions and stick to the
primtive constants for now:

let term_INDUCT,term_RECURSION = define_type

"term = Var string type
| Equal type | Select type

| Comb term term

| Abs string type term";;

May need welltypedness hypotheses enforced in OCaml by abstract
type.

8

Syntactic notions

Many OCaml syntax functions are mapped naively into HOL
functions (they always terminate and never generate exceptions).

let rec vfree_in v tm =

match tm with

Abs(bv,bod) -> v <> bv & vfree_in v bod

| Comb(s,t) -> vfree_in v s or vfree_in v t

| _ -> tm = v

The function maps almost directly into HOL:

let VFREE_IN = define

‘(VFREE_IN v (Var x ty) <=> (Var x ty = v)) /\

(VFREE_IN v (Equal ty) <=> (Equal ty = v)) /\

(VFREE_IN v (Select ty) <=> (Select ty = v)) /\

(VFREE_IN v (Comb s t) <=> VFREE_IN v s \/ VFREE_IN v t) /\

(VFREE_IN v (Abs x ty t) <=> ˜(Var x ty = v) /\ VFREE_IN v t)‘;;

9

Type instantiation (1)

Type instantiation may generate exceptions (trapped internally in
recursions).

let rec inst env tyin tm =

match tm with

Var(n,ty) -> let ty’ = type_subst tyin ty in

let tm’ = if ty’ == ty then tm else Var(n,ty’) in

if rev_assocd tm’ env tm = tm then tm’

else raise (Clash tm’)

| Const(c,ty) -> let ty’ = type_subst tyin ty in

if ty’ == ty then tm else Const(c,ty’)

| Comb(f,x) -> let f’ = inst env tyin f and x’ = inst env tyin x in

if f’ == f & x’ == x then tm else Comb(f’,x’)

| Abs(y,t) -> let y’ = inst [] tyin y in

let env’ = (y,y’)::env in

try let t’ = inst env’ tyin t in

if y’ == y & t’ == t then tm else Abs(y’,t’)

with (Clash(w’) as ex) ->

if w’ <> y’ then raise ex else

let ifrees = map (inst [] tyin) (frees t) in

let y’’ = variant ifrees y’ in

let z = Var(fst(dest_var y’’),snd(dest_var y)) in

inst env tyin (Abs(z,vsubst[z,y] t))

10

Type instantiation (2)

Formalized inside HOL using a sum type to model exceptions.
(INST_CORE env tyin (Var x ty) =

let tm = Var x ty

and tm’ = Var x (TYPE_SUBST tyin ty) in

if REV_ASSOCD tm’ env tm = tm then Result tm’ else Clash tm’) /\

(INST_CORE env tyin (Equal ty) = Result(Equal(TYPE_SUBST t yin ty))) /\

(INST_CORE env tyin (Select ty) = Result(Select(TYPE_SUBS T tyin ty))) /\

(INST_CORE env tyin (Comb s t) =

let sres = INST_CORE env tyin s in

if IS_CLASH sres then sres else

let tres = INST_CORE env tyin t in

if IS_CLASH tres then tres else

let s’ = RESULT sres and t’ = RESULT tres in

Result (Comb s’ t’)) /\

(INST_CORE env tyin (Abs x ty t) =

let ty’ = TYPE_SUBST tyin ty in

let env’ = CONS (Var x ty,Var x ty’) env in

let tres = INST_CORE env’ tyin t in

if IS_RESULT tres then Result(Abs x ty’ (RESULT tres)) else

let w = CLASH tres in

if ˜(w = Var x ty’) then tres else

let x’ = VARIANT (RESULT(INST_CORE [] tyin t)) x ty’ in

INST_CORE env tyin (Abs x’ ty (VSUBST [Var x’ ty,Var x ty] t)))

Note that the ‘pointer eq’ optimizations have vanished!

11

The deductive system

This is the inductive definition of the entire deductive system.
|- (welltyped t ==> [] |- t === t) /\

(asl1 |- l === m1 /\ asl2 |- m2 === r /\ ACONV m1 m2

==> TERM_UNION asl1 asl2 |- l === r) /\

(asl1 |- l1 === r1 /\ asl2 |- l2 === r2 /\ welltyped(Comb l1 l2)

==> TERM_UNION asl1 asl2 |- Comb l1 l2 === Comb r1 r2) /\

(˜(EX (VFREE_IN (Var x ty)) asl) /\ asl |- l === r

==> asl |- (Abs x ty l) === (Abs x ty r)) /\

(welltyped t ==> [] |- Comb (Abs x ty t) (Var x ty) === t) /\

(p has_type Bool ==> [p] |- p) /\

(asl1 |- p === q /\ asl2 |- p’ /\ ACONV p p’

==> TERM_UNION asl1 asl2 |- q) /\

(asl1 |- c1 /\ asl2 |- c2

==> TERM_UNION (FILTER((˜) o ACONV c2) asl1)

(FILTER((˜) o ACONV c1) asl2)

|- c1 === c2) /\

(asl |- p ==> MAP (INST tyin) asl |- INST tyin p) /\

((!s s’. MEM (s’,s) ilist ==> ?x ty. (s = Var x ty) /\ s’ has_type ty) /\

asl |- p ==> MAP (VSUBST ilist) asl |- VSUBST ilist p)

12

The semantics

Semantics of terms is defined w.r.t. valuations of polymorphic type
variables and term variables.

Here is the theorem that alpha-equivalent terms have the same
semantics:

|- type_valuation tau /\ term_valuation tau sigma /\

welltyped s /\ welltyped t /\ ACONV s t

==> (semantics sigma tau s = semantics sigma tau t)

The proofs are a bit messy but essentially routine. Definition of
semantic entailment:

|- asms |= p <=> ALL (\a. a has_type Bool) (CONS p asms) /\

!sigma tau. type_valuation tau /\

term_valuation tau sigma /\

ALL (\a. semantics sigma tau a = true) asms

==> (semantics sigma tau p = true)

13

Correctness proof

We can prove various individual inference steps correct, e.g.
abstracting both sides of an equation:

|- ˜(EX (VFREE_IN (Var x ty)) asl) /\ asl |= l === r

==> asl |= (Abs x ty l) === (Abs x ty r)

and so get our grand final theorems:

|- asl |- p ==> asl |= p

and

|- ?p. p has_type Bool /\ ˜([] |- p)

14

To do

• Include arbitrary signatures

• Prove conservativity of definitional extension

• Use more realistic model of OCaml

Still, this work has gone far enough for us to feel quite confident that
there are no more variable renaming bugs...

15

