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What is formalization of mathematics?

Two aspects, corresponding to Leibniz’s characteristica universalis
and calculus ratiocinator.

• Express statement of theorems in a formal language, typically in
terms of primitive notions such as sets.

• Write proofs using a fixed set of formal inference rules, whose
correct form can be checked algorithmically.

Correctness of a formal proof is an objective question, algorithmically
checkable in principle.
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Mathematics is reduced to sets

The explication of mathematical concepts in terms of sets is now
quite widely accepted (see Bourbaki).

• A real number is a set of rational numbers . . .

• A Turing machine is a quintuple (Σ, A, . . .)

Statements in such terms are generally considered clearer and more
objective. (Consider pathological functions from real analysis . . . )
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Symbolism is important

The use of symbolism in mathematics has been steadily increasing
over the centuries:

[Symbols] have invariably been introduced to make things
easy. [. . . ] by the aid of symbolism, we can make transitions
in reasoning almost mechanically by the eye, which
otherwise would call into play the higher faculties of the
brain. [. . . ] Civilisation advances by extending the number of
important operations which can be performed without
thinking about them.
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Formalization is the key to rigour

Formalization now has a important conceptual role in principle:

As to precision, we have now stated an absolute standard of
rigor: A Mathematical proof is rigorous when it is (or could
be) written out in the first-order predicate language L(∈) as
a sequence of inferences from the axioms ZFC, each
inference made according to one of the stated rules. [. . . ]
When a proof is in doubt, its repair is usually just a partial
approximation to the fully formal version.

What about in practice?
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Logical symbolism in practice

Variables were used in logic long before they appeared in
mathematics, but logical symbolism is rare in current mathematics.

Yet now, apart from the odd ‘⇒’, logical relationships are usually
expressed in natural language, with all its subtlety and ambiguity.

“as far as the mathematical community is concerned George
Boole has lived in vain”

Many mathematicians are probably unable to understand typical
logical notation.
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Formal proof in practice

Very few people do formal proofs:

“this mechanical method of deducing some mathematical
theorems has no practical value because it is too
complicated in practice.”

and those who do usually regret it:

“my intellect never quite recovered from the strain of writing
[Principia Mathematica]. I have been ever since definitely
less capable of dealing with difficult abstractions than I was
before.”

However, now we have computers to check and even automatically
generate formal proofs . . .
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Why formalize?

There are two main reasons for formalizing mathematics:

• To show that it is possible, perhaps in pursuit of a philosophical
thesis such as logicism

• To really improve the rigour and objectivity of mathematical
proofs.

Only for the second objective do we need to actually formalize proofs.
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Are proofs in doubt?

Mathematical proofs are subjected to peer review, but errors often
escape unnoticed.

Professor Offord and I recently committed ourselves to an
odd mistake (Annals of Mathematics (2) 49, 923, 1.5). In
formulating a proof a plus sign got omitted, becoming in
effect a multiplication sign. The resulting false formula got
accepted as a basis for the ensuing fallacious argument. (In
defence, the final result was known to be true.)

A book by Lecat gave 130 pages of errors made by major
mathematicians up to 1900.

A similar book today would no doubt fill many volumes.
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Most doubtful informal proofs

What are the proofs where we do in practice worry about
correctness?

• Those that are just very long and involved. Classification of finite
simple groups, Seymour-Robertson graph minor theorem

• Those that involve extensive computer checking that cannot in
practice be verified by hand. Four-colour theorem, Hales’s proof
of the Kepler conjecture

• Those that are about very technical areas where complete rigour
is painful. Some branches of proof theory, formal verification of
hardware or software
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Formal verification

In most software and hardware development, we lack even informal
proofs of correctness.

Correctness of hardware, software, protocols etc. is routinely
“established” by testing.

However, exhaustive testing is impossible and subtle bugs often
escape detection until it’s too late.

The consequences of bugs in the wild can be serious, even deadly.

Formal verification (proving correctness) seems the most satisfactory
solution, but gives rise to large, ugly proofs.
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The FDIV bug

A great stimulus to formal verification at Intel:

• Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors in 1994

• Very rarely encountered, but was hit by a mathematician doing
research in number theory.

• Intel eventually set aside US $475 million to cover the costs of
replacements.

We don’t want something like that to happen again!
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The trends are worrying . . .

Recent Intel processor generations (Pentium, P6 and Pentium 4)
indicate:

• A 4-fold increase in overall complexity (lines of RTL . . . ) per
generation

• A 4-fold increase in design bugs per generation.

• Approximately 8000 bugs introduced during design of the
Pentium 4.

Fortunately, pre-silicon detection rates are now very close to 100%,
partly thanks to formal verification.
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4-colour Theorem

Early history indicates fallibility of the traditional social process:

• Proof claimed by Kempe in 1879

• Flaw only point out in print by Heaywood in 1890

Later proof by Appel and Haken was apparently correct, but gave
rise to a new worry:

• How to assess the correctness of a proof where many explicit
configurations are checked by a computer program?

Most worries finally dispelled by Gonthier’s formal proof in Coq.
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Who checks the checker?

Why should we believe that a formally checked proof is more reliable
than a hand proof or one supported by ad-hoc programs?

• What if the underlying logic is inconsistent? Many notable
logicians from Curry to Martin-Löf have proposed systems that
turned out to be inconsistent.

• What if the inference rules of the logic are specified incorrectly?
It’s easy and common to make mistakes connected with variable
capture.

• What if the proof checker has a bug? They are often large and
complex pieces of software not developed to high standards of
rigour
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Who cares?

The robust view:

• Bugs in theorem provers do happen, but are unlikely to produce
apparent “proofs” of real results.

• Even the flakiest theorem provers are far more reliable than most
human hand proofs.

• Problems in specification and modelling are more likely.

• Nothing is ever 100% certain, and a foundational death spiral
adds little value.
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We may care

The hawkish view:

• There has been at least one false “proof” of a real result.

• It’s unsatisfactory that we urge formality on others while
developing provers so casually.

• It should be beyond reasonable doubt that we do or don’t have a
formal proof.

• A quest for perfection is worthy, even if the goal is unattainable.
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Prover architecture

The reliability of a theorem prover increases dramatically if its
correctness depends only on a small amount of code.

• de Bruijn approach — generate proofs that can be certified by a
simple, separate checker.

• LCF approach — reduce all rules to sequences of primitive
inferences implemented by a small logical kernel.

The checker or kernel can be much simpler than the prover as a
whole.

Nothing is ever certain, but we can potentially achieve very high
levels of reliability in this way.
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HOL Light

HOL Light is an extreme case of the LCF approach. The entire
critical core is 430 lines of code:

• 10 rather simple primitive inference rules

• 2 conservative definitional extension principles

• 3 mathematical axioms (infinity, extensionality, choice)

Everything, even arithmetic on numbers, is done by reduction to the
primitive basis.
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Automation versus interaction

Most theorem provers can be classified somewhere between two
extremes:

• Automatic — User states a conjecture, and the system tries to
prove it without further user intervention (e.g. Otter).

• Interactive — User gives an explicit step-by-step proof and the
system merely checks its correctness (e.g. AUTOMATH).

Best seems a combination where the user specifies the overall
sketch of the proof and the machine fills in the gaps automatically.
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Choice of foundations

What kind of logic?

• Classical — easier and more familiar

• Constructive — natural link with computation

• Partial functions — perhaps more intuitive

What kind of mathematical framework?

• Untyped set theory

• Simple type theory

• Rich dependent type theory
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Prover architecture

How to organize the construction of the prover?

• Arbitrary programming

• Based on fixed primitive inferences

• Extensible by reflection principles

Coq uses a combination of approaches:

• The set of inference rules is fixed

• Evaluation is optimized for execution inside the logic

21



Proof style

Directly invoking the primitive or derived rules tends to give proofs
that are procedural. This can be quite compact and efficient.

But in some ways a declarative style (what is to be proved, not how)
is more attractive: easier to understand independent of the prover.

Mizar pioneered the declarative style of proof, and it is now being
adopted in some other systems.

There is still no consensus on what is best. Perhaps we need to be
able to combine both?
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A few notable general-purpose theorem provers

Different systems with various strengths and weaknesses:

• ACL2

• Coq

• HOL Light, HOL4 and ProofPower

• IMPS

• Isabelle

• Mizar

• Nuprl

• PVS
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State of the art

Three notable recent proofs:

• Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL)

• Four-colour theorem — Georges Gonthier (Coq)

• Jordan Curve Theorem — Tom Hales (HOL Light)

These indicate that highly non-trivial results are within reach.
However these all required months/years of work.
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Theorem provers and computer algebra systems

Both are systems for symbolic computation, but in practice they are
very different:

• CASs are generally easier to use and more efficient

• Theorem provers are more logically flexible and rigorous

Some systems like MathXpert blur the distinction somewhat . . .
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Semantics of expressions

Consider an equation (x2 − 1)/(x − 1) = x + 1 from a CAS. What
does it mean?

• Universally valid identity (albeit not quite valid)?

• Identity true when both sides are defined

• Identity over the field of rational functions

• . . .
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Lack of rigour in many CASs

CASs often apply simplifications even when they are not strictly valid.

Hence they can return wrong results.

Consider the evaluation of this integral in Maple:

∫

∞

0

e−(x−1)2

√
x

dx

We try it two different ways:
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An integral in Maple

> int(exp(-(x-t)ˆ2)/sqrt(x), x=0..infinity);
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> subs(t=1,%);
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> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)ˆ2)/sqrt(x), x=0..infinity));

1.973732150
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Combining theorem provers and computer algebra systems

We can combine CASs and other useful bits of mathematical
software with theorem provers.

But how can we gain the power of a CAS without sacrificing logical
rigour?

Use the CAS as an oracle but check its “certificates”.

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac ≥ 0

can easily be proved by considering the certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

however the magic identity was arrived at.
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Example of external linkage

Here’s a combination of HOL Light and PARI/GP in action:

# time PRIME_CONV ‘prime 1234567891‘;;

Reading GPRC: /home/knoppix/.gprc ...Done.

proving that 1234567891 is prime

Reading GPRC: /home/knoppix/.gprc ...Done.

Reading GPRC: /home/knoppix/.gprc ...Done.

CPU time (user): 0.09

val it : thm = |- prime 1234567891 <=> T
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Certificate-producing mathematical software

We’d like computer algebra systems and other mathematical
software to produce these certificates when possible.

Example: when a polynomial is in an ideal, give the cofactors or a
derivation tree.

It’s apparently quite hard to get this information from many computer
algebra systems, yet it is very useful.
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Conclusions

• Formalization of mathematics is feasible with modern computer
technology and sofware.

• Useful in formal verification and arguably in pure mathematics
too.

• Still many provers and many different design choices without
clear consensus.

• We may be able to exploit other bits of mathematical software
without sacrificing rigour.

32


