
Overview for Viorel Preoteasa’s defence

John Harrison
Intel Corporation
johnh@ichips.intel.com

Åbo Akademi

10th November 2006

0



The correctness problem

It’s fundamentally difficult to produce correct hardware, software,
protocols etc.

Bugs are commonplace, almost routine.

Quality issues are becoming a major preoccupation in the hardware
and the software industry.

Many software companies devote more resources to
quality/validation than to writing the software in the first place.

In hardware, validation is often the crucial bottleneck.

1



Famous floating-point bugs

• Patriot missile failure during first Gulf War in 1991

• Explosion of Ariane 5 rocket on maiden flight

• Faulty transcendental functions in early HP-35 calculators

• Bug in floating-point division (FDIV) instruction on some early
IntelPentium processors

2



Things are not getting easier

The FDIV bug caused Intel to set aside $475M to cover relacement.
The environment is becoming even less benign.

• The overall market is much larger, so the potential cost of
recall/replacement is far higher.

• New products are ramped faster and reach high unit sales very
quickly.

• Competitive pressures are leading to more design complexity
(recently around 4x per generation)

3



Limits of testing

Bugs are usually detected by extensive testing.

• Too many possibilities to test them all

• In hardware, it’s slow to test under simulation

The solution: prove correctness instead of just testing: formal
verification.

4



A spectrum of formal techniques

There are various possible levels of rigor in correctness proofs:

• Programming language typechecking

• Lint-like static checks (uninitialized variables . . . )

• Checking of loop invariants and other annotations

• Complete functional verification

5



FV in the software industry

Some recent success with partial verification in the software world:

• Analysis of Microsoft Windows device drivers using SLAM

• Non-overflow proof for Airbus A380 flight control software

Much less use of full functional verification. Very rare except in highly
safety-critical or security-critical niches.

6



Problems with formal software verification

There is an elegant theoretical basis for software verification, but:

• Theory much uglier with decomposed state space

• Often for toy language without procedures or recursion

• No theory to support dynamic data structures, pointers

• Inadequate mechanized support makes proofs impractical

Exactly these limitations are addressed by this work.

7


