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Without loss of generality

Mathematical proofs sometimes state that a certain assumption can
be made ‘without loss of generality’ (WLOG).

Claims that proving the result in a more special case is nevertheless
sufficient to justify the theorem in full generality.

Often justified by some sort of symmetry in the problem.



Example: Schur’s inequality

Schur’s asserts that for any nonnegative real numbers a, b and ¢ and
integer k£ > 0 one has

0<a"(a—0b)a—c)+b°(b—a)b—c)+c"(c—a)lc—Db)

A typical proof (e.g. the one on Wikipedia) would start:

Without loss of generality, let a < b < c.



Justification for this step

Since < is a total order, the three numbers must be ordered
somehow, i.e. we must have (at least) one of a < b < ¢,
a<c<bhb<a<eb<c<agc<a<bore<b<a.But
the theorem is completely symmetric between a, b and ¢, so
each of these cases is just a version of the other with a
change of variables, and we may as well just consider one of
them.



Two subtly different variants

e ‘The other cases are similar and are left to the reader’ — might
just program the theorem prover to do multiple cases.

e ‘Without loss of generality ... — we want to appeal to a general
logical principle

In a programmable theorem prover we can easily do the first here,
but in general cases there may be a large or even infinite number of
cases.



HOL Light proof of Schur’s inequality




Conclusions from this exercise

e We embodied the ‘WLOG’ reasoning in a general theorem

e We deployed it and could follow the hand proof quite directly.



Conclusions from this exercise

e We embodied the ‘WLOG’ reasoning in a general theorem
e We deployed it and could follow the hand proof quite directly.

e However, establishing the required symmetry in the specific
problem is the weak spot.

e It was easy here, but in more complicated situations it’s likely to
be beyond the capacity of automation.



WLOG reasoning in geometry

Geometry is rich in WLOG principles, reflecting the importance of
property-preserving transformations:

e Klein’s “Erlanger Programm” emphasizes the role of
transformations and invariance under classes of transformations

e Noether's work connects physical conservation principles to
invariance of physical laws under transformations.

Invariance under transformations is often used to pick a more
convenient or intuitive coordinate system in proofs.



First attempt at WLOG reasoning in geometry




Transforming quantifiers

We want to apply the same transformation to the quantified variables.

This can be justified based only on the surjectivity of the
transformation:

|- If. (ly. ?2x. f x =vy)
==> (IP. (Ix. PXx) <=> (!x. P (f x))) /\
(I'P. (?x. P Xx) <=> (?x. P (f x)))

Translation by a is clearly surjective because if x = y — a then
a+x=1y.
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Transforming higher-order quantifiers

We can actually justify similar transformations on quantifiers over
sets of points, and set abstractions defining such sets.

|- 'f. (ly. ?2x. T x =vy)
==> (IP. (Ix. Px) <=> (!'x. P (f x))) /\
('P. (?X. P x) <= (?x. P (f x))) /\
('Q (!'s. Qs) <=>(!s. Q(IMAGE T s))) /\
('Q (?s. Qs) <=> (?s. Q(IMAGE T s))) [\
('P. {x | Px} =IMAGETf {x | P (f x)})

This allows us to apply similar WLOG reasoning to properties
iInvolving sets.
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Checking invariance of basic properties

We keep a reference variable i nvari ant _under transl ati on
of invariance theorems, which users are encouraged to add to for
each new geometric concept:

|- 'a xvy. dist (a + x,a +y) =dist (xX,VY)

|- 'a s. connected (I MAGE (\Xx. a + X) sS) <=> connected
Some really show how to ‘pull’ translation through a concept:

|- 'a x y. mdpoint (a + x,a +y) = a + mdpoint (X,VY)

|- 'a s. convex hull IMAGE (\Xx. a + X) s =
| MAGE (\x. a + x) (convex hull s)
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GEOM_ORIGIN_TAC

Our tactic GEOM ORI G N_TAC now automates everything:
e Applies basic invariance theorem
e Systematically transforms all other quantifiers

e Applies invariance theorems in a bottom-up sweep to prove
iInvariance.

Usually the user doesn’t have to intervene at all, unless the
Invariance becomes problematic.
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GEOM_ORIGIN_TAC examples
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The general situation

The most obvious general approach is the following:

|- ('x. ?f. transformf /\ nice (f x)) /\
('f x. transformf ==> (P (f x) <=> P X))
==> ((!x. P X) <=> (!x. nice x ==> P X))
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The general situation

The most obvious general approach is the following:

|- ('x. ?f. transformf /\ nice (f x)) /\
('f x. transformf ==> (P (f x) <=> P X))
==> ((!x. P X) <=> (!x. nice x ==> P X))

We actually prefer the following slightly less obvious variant

|- (!'x. ?f y. transformf /\ nicey /\ f y =

('f x. transformf /\ nice x ==> (P (f Xx)
==> ((Ix. PX) <=> (!'y. nicey ==> P vy))

X) [\
<=> P X))
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Invariance under linear transformations

A function f : RM — RY is linear iff:

|- linear f <=>
('xy. f (x+y) =fx+fy)/\ (lcx. f(c %x)

Many geometric properties satisfy preservation or pulling property
under linear transformations:

|- I'f ab. linear f ==> mdpoint (f a,f Db) f (mdpoin

|- 'f s. linear f
==> convex hull IMAGE f s = IMAGE f (convex hu
Some require additional properties like injectivity:

|- !'f s. linear f /\ (Ixy. f x = f y ==> x = vy)
==> (copl anar (I MAGE f s) <=> copl anar s)
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Orthogonal transformations

Many properties are only preserved in general by orthogonal
transformations, or more generally norm-preserving linear maps

f:]RM—>RNZ

|- 1f s. linear f /\ (!v. norm(f v) = normv)
==> neasure (IMAGE f s) = neasure s

|- 'f a b c.

linear f /\ (!'x. norm(f X) = norm x)
==> angle (f a,f b,f c) = angle (a,Db,c)
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Rotations

A couple even require a true rotation, i.e. an orthogonal
transformation R — R whose matrix has determinant 1, namely

cross products in R?:

|- 'f xy. linear f /\
(!x. norm(f x) = normx) /\
det(matrix f) = &1)
==>f x cross f y = f (x cross y)

and complex quotients in R?

|- 'f wz. linear f /\
(!'x. norm(f x) = normx) /\
det(matrix f) = &1)

w/ z
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GEOM_BASIS_MULTIPLE_TAC

We have a similar list of invariance properties for linear
transformations, i nvari ant _under | i near.

It is used by GEOM BASI S MULTI PLE_TAC, which picks a rotation
to bring a chosen vector onto the ‘positive’ part of any chosen
coordinate axis.

|- 'a k. 1 <=k /\ k <= dimndex(:N)
==> ?pb f. orthogonal _transformation f /\
(2 <= dimndex(:N)
==> det(matrix f) = &1) /\
f (b %basis k) =a /\
&0 <= D

We can’t in general pick a true rotation in 1 dimension, but the
properties that require it are not 1-dimensional anyway.
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An extended example
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A ‘reflective’ version?

We never formalized the class of geometric properties that are
iInvariant under various transformations. We can extend this class ‘ad
hoc’ by adding new invariance theorems.

However, we could consider formalizing this class internally.

e More complicated and inefficient, may need to be revised
repeatedly as new concepts are defined.

e May be able to deploy more interesting meta-properties that
cannot be realized by the simple recursive transformations we
use.

For example, a first-order assertion over vectors with M vector
variables, even if the pattern of quantification is involved, can be
reduced to spaces of dimension < M [SAH].
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Conclusions

e WLOG reasoning can be tricky to formalize.

e We can in general capture the key ideas in schematic theorems,

but proving that the conditions are satisfied in specific cases may
be difficult.

e Our systematic approach with automated support makes
deploying such reasoning in geometry very straightforward.

e Interesting to consider many other ‘symmetry groups’.
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