
Formal verification of IA-64 division algorithms 1

Formal verification of

IA-64 division algorithms

John Harrison

Intel Corporation

• IA-64 overview

• HOL Light overview

• IEEE correctness

• Division on IA-64

• Theory of division algorithms

• Improved theorems and faster algorithm

• Conclusions

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 2

IA-64 overview

IA-64 is a new 64-bit computer architecture

jointly developed by Hewlett-Packard and Intel,

and the ItaniumTM chip from Intel will be its

first silicon implementation. Among the special

features of IA-64 are:

• An instruction format encoding parallelism

explicitly

• Instruction predication

• Speculative and advanced loads

• Upward compatibility with IA-32 (x86).

The IA-64 Applications Developer’s Architecture

Guide is now available from Intel in printed form

and online:

http://developer.intel.com/design/ia64/downloads/adag.htm

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 3

Quick introduction to HOL Light

HOL Light is a member of the family of HOL

theorem provers.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as

the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:

http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 4

IEEE correctness

The IEEE standard states that all the algebraic

operations, including division, should give the

closest floating point number to the true answer,

or the closest number up, down, or towards zero

in other rounding modes.

-

ulp(a/b)
-�

6
a
b

In addition, all the flags need to be set correctly,

e.g. inexact, underflow,

IA-64 features an IEEE-correct fused multiple

add, which can compute xy + z with a single

rounding error. However it has no instruction for

division.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 5

Division on IA-64

Instead, approximation instructions are provided,

e.g. the floating point reciprocal approximation

instruction.

frcpa.sf f1, p2 = f3

In normal cases, this returns in f1 an

approximation to 1
f3

. The approximation has a

worst-case relative error of about 2−8.86. The

particular approximation is specified in the IA-64

architecture.

Software is intended to start from this

approximation and refine it to an IEEE-correct

quotient. Surprisingly, quite short sequences of

straight-line code suffice to do so. We will

concentrate on round-to-nearest mode, since the

other modes are much easier.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 6

Markstein’s main theorem

Markstein (IBM Journal of Research and

Development, vol. 34, 1990) proves the following

general theorem. Suppose we have a quotient

approximation q0 ≈ a
b

and a reciprocal

approximation y0 ≈ 1
b
. Provided:

• The approximation q0 is within 1 ulp of a
b
.

• The reciprocal approximation y0 is 1
b

rounded

to the nearest floating point number

then if we execute the following two fma (fused

multiply add) operations:

r = a − bq0

q = q0 + ry0

the value r is calculated exactly and q is the

correctly rounded quotient, whatever the current

rounding mode.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 7

Markstein’s reciprocal theorem

The problem is that we need a perfectly rounded

y0 first, for which Markstein proves the following

variant theorem.

If y0 is within 1ulp of the exact 1
b
, then if we

execute the following fma operations in

round-to-nearest mode:

e = 1 − by0

y = y0 + ey0

then e is calculated exactly and y is the correctly

rounded reciprocal, except possibly when the

mantissa of b is all 1s.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 8

Using the theorems

Using these two theorems together, we can obtain

an IEEE-correct division algorithm as follows:

• Calculate approximations y0 and q0 accurate

to 1 ulp (straightforward). [N fma latencies]

• Refine y0 to a perfectly rounded y1 by two

fma operations, and in parallel calculate the

remainder r = a − bq0. [2 fma latencies]

• Obtain the final quotient by q = q0 + ry0. [1

fma latency].

There remains the task of ensuring that the

algorithm works correctly in the special case

where b has a mantissa consisting of all 1s.

One can prove this simply by testing whether the

final quotient is in fact perfectly rounded. If it

isn’t, one needs a slightly more complicated proof.

Markstein shows that things will still work

provided q0 overestimates the true quotient.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 9

Initial algorithm example

Our example is an algorithm for quotients using

only single precision computations (hence suitable

for SIMD). It is built using the frcpa instruction

and the (negated) fma (fused-multiply-add):

1. y0 = 1
b
(1 + ǫ) [frcpa]

2. e0 = 1 − by0

3. y1 = y0 + e0y0

4. e1 = 1 − by1 q0 = ay0

5. y2 = y1 + e1y1 r0 = a − bq0

6. e2 = 1 − by2 q1 = q0 + r0y2

7. y3 = y2 + e2y2 r1 = a − bq0

8. q = q1 + r1y3

This algorithm needs 8 times the basic fma

latency, i.e. 8 × 5 = 40 cycles.

For extreme inputs, underflow and overflow can

occur, and the formal proof needs to take account

of this.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 10

Improved theorems

In proving Markstein’s theorems formally in

HOL, we noticed a way to strengthen them. For

the main theorem, instead of requiring y0 to be

perfectly rounded, we can require only a relative

error:

|y0 −
1

b
| < |

1

b
|/2p

where p is the floating point precision. Actually

Markstein’s original proof only relied on this

property, but merely used it as an intermediate

consequence of perfect rounding.

The altered precondition looks only trivially

different, and in the worst case it is. However it is

in general much easier to achieve.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 11

Achieving the relative error bound

Suppose y0 results from rounding a value y∗

0 .

The rounding can contribute as much as
1
2

ulp(y∗

0), which in all significant cases is the

same as 1
2

ulp(1
b
).

Thus the relative error condition after rounding is

achieved provided y∗

0 is in error by no more than

|
1

b
|/2p −

1

2
ulp(

1

b
)

In the worst case, when b’s mantissa is all 1s,

these two terms are almost identical so extremely

high accuracy is needed. However at the other

end of the scale, when b’s mantissa is all 0s, they

differ by a factor of two.

Thus we can generalize the way Markstein’s

reciprocal theorem isolates a single special case.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 12

Stronger reciprocal theorem

We have the following generalization: if y0 results

from rounding a value y∗

0 with relative error

better than d
22p :

|y∗

0 −
1

b
| ≤

d

22p
|
1

b
|

then y0 meets the relative error condition for the

main theorem, except possibly when the mantissa

of b is one of the d largest, i.e. when considered

as an integer is 2p − d ≤ m ≤ 2p − 1.

Hence, we can compute y0 more ‘sloppily’, and

hence perhaps more efficiently, at the cost of

explicitly checking more special cases.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 13

An improved algorithm

The following algorithm can be justified by

applying the theorem with d = 165, explicitly

checking 165 special cases.

1. y0 = 1
b
(1 + ǫ) [frcpa]

2. d = 1 − by0 q0 = ay0

3. y1 = y0 + dy0 d′ = d + dd r0 = a − bq0

4. e = 1 − by1 y2 = y0 + d′y0 q1 = q0 + r0y1

5. y3 = y1 + ey2 r1 = a − bq1

6. q = q1 + r1y3

On a machine capable of issuing three FP

operations per cycle, this can be run in 6 FP

latencies.

ItaniumTM can only issue two FP instructions

per cycle, but since it is fully pipelined, this only

increases the overall latency by one cycle, not a

full FP latency. Thus the whole algorithm runs in

31 cycles.

John Harrison Intel Corporation, 15 August 2000

Formal verification of IA-64 division algorithms 14

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed is done in a unified way with

the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof of the special Markstein-type theorems

• Routine relative error computation for the

final result before rounding

• Explicit computation with the special cases

isolated.

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

Finally, the detailed examination of the proofs

that formal verification requires threw up

significant improvements that have led to some

faster algorithms.

John Harrison Intel Corporation, 15 August 2000

