
Applications panel introduction

John Harrison
Intel Corporation

Grand Challenge Verification Workshop 2005

Tue 22nd February 2005 (15:30 – 16:30)

0



Summary

• Hardware or software?

• Model checking or theorem proving?

• Correct small systems or better large systems?

• Academia or Industry?

• Success or failure?

• What I do

1



Hardware or software?

Formal verification is currently better established in the hardware
industry. Several plausible reasons:

• Hardware is designed in a more modular way than most software

• There is more scope for complete automation

• The potential consequences of a hardware error are greater

However, the conceptual gap between hardware and software is no
longer so large, given high-level HDLs and various intermediate
levels like microcode and PAL code.

2



Model checking or theorem proving?

The best-established formal verification techniques are the highly
automated ones like equivalence checking and model checking.

Where applicable, these are very effective and can be used profitably
by non-experts.

In some cases, more general theorem proving is essential either
because:

• The number of states is infinite or too large for enumeration to be
practical (e.g. cache coherence with many nodes).

• The problem cannot even be specified for a simpler system (e.g.
floating-point transcendentals).

Considerable interest in using theorem proving as a ‘glue’ to reliably
break down and abstract problems for model checking.

3



Correct small systems or better large systems?

Traditionally, much emphasis was placed on complete rigorous
verification of a relatively simple system — for example the CLI stack.

Recently, there has been more interest in ‘partial’ verification of real
complex systems

• Analysis of Windows device drivers using SLAM

• Non-overflow proof for A380 flight control software

Both approaches may have an important place in moving towards
reliable large systems.

4



Academia or Industry?

In academia

• Easier to take time to analyze a problem thoroughly and find a
general, elegant solution rather than a ‘quick fix’.

• Easier to collaborate and share, building on work of others

while in industry

• Stimulating drive of real problems, and simply an appreciation of
the realities of the design process

• Opportunity to influence existing development processes.

The last can be a source of frustration as well as opportunity.

5



Success or failure?

There are plenty of verification success stories to brag about.

Nevertheless, formal verification is still a relatively small part of the
hardware industry, and a minuscule part of the software industry.

Both academia and industry can do their bit to make formal
verification more successful:

• Improve teaching of formal methods in CS curricula; avoid the
general de-emphasis of ‘proof’

• Be more open to rational improvements in the development
process, and avoid the rush to unmastered complexity.

6



What I do

I work on formal verification at Intel, almost entirely using the HOL
Light theorem prover.

Most of my work has been on the correctness of floating-point
algorithms (a sore spot for Intel after the FDIV bug):

• Proving that division and square root algorithms deliver correctly
rounded results

• Proving rigorous error bounds for transcendental functions.

Generally quite successful. Many successful verifications, some
bugs found, and some more efficient algorithms designed as a result
of the formal analysis.

7



Example: tangent algorithm

• The input number X is first reduced to r with approximately
|r| ≤ π/4 such that X = r + Nπ/2 for some integer N . We now
need to calculate ±tan(r) or ±cot(r) depending on N modulo 4.

• If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part x = r − B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

8



Overview of the verification

To verify this algorithm, we need to prove:

• The range reduction to obtain r is done accurately.

• The mathematical facts used to reconstruct the result from
components are applicable.

• Stored constants such as tan(B) are sufficiently accurate.

• The power series approximation does not introduce too much
error in approximation.

• The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them require
more pure mathematics than might be expected.

9


