Applications panel introduction

John Harrison
Intel Corporation

Grand Challenge Verification Workshop 2005

Tue 22nd February 2005 (15:30 — 16:30)



Summary

e Hardware or software?

e Model checking or theorem proving?

e Correct small systems or better large systems?
e Academia or Industry?

e Success or failure?

e Whatl do



Hardware or software?

Formal verification is currently better established in the hardware
industry. Several plausible reasons:

e Hardware is designed in a more modular way than most software
e There is more scope for complete automation
e The potential consequences of a hardware error are greater

However, the conceptual gap between hardware and software is no
longer so large, given high-level HDLs and various intermediate
levels like microcode and PAL code.



Model checking or theorem proving?

The best-established formal verification techniques are the highly
automated ones like equivalence checking and model checking.

Where applicable, these are very effective and can be used profitably
by non-experts.

In some cases, more general theorem proving is essential either
because:

e The number of states is infinite or too large for enumeration to be
practical (e.g. cache coherence with many nodes).

e The problem cannot even be specified for a simpler system (e.g.
floating-point transcendentals).

Considerable interest in using theorem proving as a ‘glue’ to reliably
break down and abstract problems for model checking.



Correct small systems or better large systems?

Traditionally, much emphasis was placed on complete rigorous
verification of a relatively simple system — for example the CLI stack.

Recently, there has been more interest in ‘partial’ verification of real
complex systems

e Analysis of Windows device drivers using SLAM
e Non-overflow proof for A380 flight control software

Both approaches may have an important place in moving towards
reliable large systems.



Academia or Industry?

In academia

e Easier to take time to analyze a problem thoroughly and find a
general, elegant solution rather than a ‘quick fix’.

e Easier to collaborate and share, building on work of others
while in industry

e Stimulating drive of real problems, and simply an appreciation of
the realities of the design process

e Opportunity to influence existing development processes.

The last can be a source of frustration as well as opportunity.



Success or failure?

There are plenty of verification success stories to brag about.

Nevertheless, formal verification is still a relatively small part of the
hardware industry, and a minuscule part of the software industry.

Both academia and industry can do their bit to make formal
verification more successful:

e Improve teaching of formal methods in CS curricula; avoid the
general de-emphasis of ‘proof’

e Be more open to rational improvements in the development
process, and avoid the rush to unmastered complexity.



What | do

| work on formal verification at Intel, almost entirely using the HOL
Light theorem prover.

Most of my work has been on the correctness of floating-point
algorithms (a sore spot for Intel after the FDIV bug):

e Proving that division and square root algorithms deliver correctly
rounded results

e Proving rigorous error bounds for transcendental functions.

Generally quite successful. Many successful verifications, some
bugs found, and some more efficient algorithms designed as a result
of the formal analysis.



Example: tangent algorithm

e The input number X is first reduced to » with approximately
7| < m/4 such that X =r + N« /2 for some integer N. We now
need to calculate t+tan(r) or +cot(r) depending on N modulo 4.

e |If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part = r — B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

1
sin(B)cos(B)

cot(B) — tan(x)

tan(x)
tan(B + x) = tan(B) +

e Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.



Overview of the verification

To verify this algorithm, we need to prove:

The range reduction to obtain r is done accurately.

The mathematical facts used to reconstruct the result from
components are applicable.

Stored constants such as tan(B) are sufficiently accurate.

The power series approximation does not introduce too much
error in approximation.

The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them require
more pure mathematics than might be expected.



