
Formal verification of floating-point arithmetic at
Intel

John Harrison

Intel Corporation

6 June 2012

1

Summary

I Some notable computer arithmetic failures

I Formal verification, testing and models

I Formal verification techniques at Intel

I Perspectives and future prospects

2

Summary

I Some notable computer arithmetic failures

I Formal verification, testing and models

I Formal verification techniques at Intel

I Perspectives and future prospects

2

Summary

I Some notable computer arithmetic failures

I Formal verification, testing and models

I Formal verification techniques at Intel

I Perspectives and future prospects

2

Summary

I Some notable computer arithmetic failures

I Formal verification, testing and models

I Formal verification techniques at Intel

I Perspectives and future prospects

2

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Ariane rocket failure

In 1996, the Ariane 5 rocket on its maiden flight was destroyed;
the rocket and its cargo were estimated to be worth $500M.

I Cause was an uncaught floating-point exception

I A 64-bit floating-point number representing horizontal velocity
was converted to a 16-bit integer

I The number was larger than 215.

I As a result, the conversion failed.

I The rocket veered off its flight path and exploded, just 40
seconds into the flight sequence.

3

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Patriot missile failure

During the first Gulf War in 1991, 28 soldiers were killed when a
Scud missile struck an army barracks.

I Patriot missile failed to intercept the Scud

I Underlying cause was a computer arithmetic error in
computing time since boot

I Internal clock was multiplied by 1
10 to produce time in seconds

I Actually performed by multiplying 24-bit approximation of 1
10

I Net error after 100 hours about 0.34 seconds.

I A Scud missile travels 500m in that time

4

Intel’s FDIV bug

Intel has also had at least one major floating-point issue:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

5

Intel’s FDIV bug

Intel has also had at least one major floating-point issue:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

5

Intel’s FDIV bug

Intel has also had at least one major floating-point issue:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

5

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

I Slow — especially pre-silicon

I Too many possibilities to test them all

For example:

I 2160 possible pairs of floating point numbers (possible inputs
to an adder).

I Vastly higher number of possible states of a complex
microarchitecture.

6

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

I Slow — especially pre-silicon

I Too many possibilities to test them all

For example:

I 2160 possible pairs of floating point numbers (possible inputs
to an adder).

I Vastly higher number of possible states of a complex
microarchitecture.

6

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

I Slow — especially pre-silicon

I Too many possibilities to test them all

For example:

I 2160 possible pairs of floating point numbers (possible inputs
to an adder).

I Vastly higher number of possible states of a complex
microarchitecture.

6

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

I Slow — especially pre-silicon

I Too many possibilities to test them all

For example:

I 2160 possible pairs of floating point numbers (possible inputs
to an adder).

I Vastly higher number of possible states of a complex
microarchitecture.

6

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

I Slow — especially pre-silicon

I Too many possibilities to test them all

For example:

I 2160 possible pairs of floating point numbers (possible inputs
to an adder).

I Vastly higher number of possible states of a complex
microarchitecture.

6

Formal verification

Formal verification: mathematically prove the correctness of a
design with respect to a mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

7

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

I π(n) = number of primes ≤ n

I li(n) =
∫ n
0 du/ln(u)

Littlewood proved in 1914 that π(n)− li(n) changes sign infinitely
often.
No change of sign at all had ever been found despite testing up to
n = 1010 (in the days before computers).
Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

8

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

I π(n) = number of primes ≤ n

I li(n) =
∫ n
0 du/ln(u)

Littlewood proved in 1914 that π(n)− li(n) changes sign infinitely
often.

No change of sign at all had ever been found despite testing up to
n = 1010 (in the days before computers).
Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

8

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

I π(n) = number of primes ≤ n

I li(n) =
∫ n
0 du/ln(u)

Littlewood proved in 1914 that π(n)− li(n) changes sign infinitely
often.
No change of sign at all had ever been found despite testing up to
n = 1010 (in the days before computers).

Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

8

Analogy with mathematics

Sometimes even a huge weight of empirical evidence can be
misleading.

I π(n) = number of primes ≤ n

I li(n) =
∫ n
0 du/ln(u)

Littlewood proved in 1914 that π(n)− li(n) changes sign infinitely
often.
No change of sign at all had ever been found despite testing up to
n = 1010 (in the days before computers).
Similarly, extensive testing of hardware or software may still miss
errors that would be revealed by a formal proof.

8

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Verification vs. testing

Verification has some advantages over testing:

I Exhaustive.

I Improves our intellectual grasp of the system.

However:

I Difficult and time-consuming.

I Only as reliable as the formal models used.

I How can we be sure the proof is right?

9

Formal verification is hard

Writing out a completely formal proof of correctness for real-world
hardware and software is difficult.

I Must specify intended behaviour formally

I Need to make many hidden assumptions explicit

I Requires long detailed proofs, difficult to review

The state of the art is quite limited.
Software verification has been around since the 60s, but there have
been few major successes.

10

Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.

11

Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.

11

Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.

11

Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.

11

Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.

11

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)
This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

I Presented five supporting lemmas and one main correctness
theorem.

I Lemmas 1, 2, and 3 were all false.

I The proof of the main induction in the final theorem was
wrong.

I The main result, however, was correct!

12

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)
This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

I Presented five supporting lemmas and one main correctness
theorem.

I Lemmas 1, 2, and 3 were all false.

I The proof of the main induction in the final theorem was
wrong.

I The main result, however, was correct!

12

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)
This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

I Presented five supporting lemmas and one main correctness
theorem.

I Lemmas 1, 2, and 3 were all false.

I The proof of the main induction in the final theorem was
wrong.

I The main result, however, was correct!

12

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)
This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

I Presented five supporting lemmas and one main correctness
theorem.

I Lemmas 1, 2, and 3 were all false.

I The proof of the main induction in the final theorem was
wrong.

I The main result, however, was correct!

12

Faulty hand proofs

“Synchronizing clocks in the presence of faults” (Lamport &
Melliar-Smith, JACM 1985)
This introduced the Interactive Convergence Algorithm for clock
synchronization, and presented a ‘proof’ of it.

I Presented five supporting lemmas and one main correctness
theorem.

I Lemmas 1, 2, and 3 were all false.

I The proof of the main induction in the final theorem was
wrong.

I The main result, however, was correct!

12

Machine-checked proof

A more promising approach is to have the proof checked (or even
generated) by a computer program.

I It can reduce the risk of mistakes.

I The computer can automate some parts of the proofs.

There are limits on the power of automation, so detailed human
guidance is often necessary.

13

A variety of verification methods

There is a diverse world of formal verification methods, trading
automation for generality / efficiency, most of which are in active
use at Intel.

I Propositional tautology/equivalence checking (FEV)

I Symbolic simulation

I Symbolic trajectory evaluation (STE)

I Temporal logic model checking

I Combined decision procedures (SMT)

I First order automated theorem proving

I Interactive theorem proving

14

A spectrum of formal techniques

Traditionally, formal verification has been focused on complete
proofs of functional correctness.
But recently there have been notable successes elsewhere for
‘semi-formal’ methods involving abstraction or more limited
property checking.

I Airbus A380 avionics

I Microsoft SLAM/SDV

One can also consider applying theorem proving technology to
support testing or other traditional validation methods like path
coverage.
These are all areas of interest at Intel.

15

Our work

We have formally verified correctness of various floating-point
algorithms.

I Division and square root (Marstein-style, using fused
multiply-add to do Newton-Raphson or power series
approximation with delicate final rounding).

I Transcendental functions like log and sin (table-driven
algorithms using range reduction and a core polynomial
approximations).

Proofs use the HOL Light prover

I http://www.cl.cam.ac.uk/users/jrh/hol-light

16

http://www.cl.cam.ac.uk/users/jrh/hol-light

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations

17

Example: tangent algorithm

I The input number X is first reduced to r with approximately
|r | ≤ π/4 such that X = r + Nπ/2 for some integer N. We
now need to calculate ±tan(r) or ±cot(r) depending on N
modulo 4.

I If the reduced argument r is still not small enough, it is
separated into its leading few bits B and the trailing part
x = r − B, and the overall result computed from tan(x) and
pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B)− tan(x)

I Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

18

Example: tangent algorithm

I The input number X is first reduced to r with approximately
|r | ≤ π/4 such that X = r + Nπ/2 for some integer N. We
now need to calculate ±tan(r) or ±cot(r) depending on N
modulo 4.

I If the reduced argument r is still not small enough, it is
separated into its leading few bits B and the trailing part
x = r − B, and the overall result computed from tan(x) and
pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B)− tan(x)

I Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

18

Example: tangent algorithm

I The input number X is first reduced to r with approximately
|r | ≤ π/4 such that X = r + Nπ/2 for some integer N. We
now need to calculate ±tan(r) or ±cot(r) depending on N
modulo 4.

I If the reduced argument r is still not small enough, it is
separated into its leading few bits B and the trailing part
x = r − B, and the overall result computed from tan(x) and
pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B)− tan(x)

I Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

18

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.

19

Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X − Nπ/2 is small.
To check that the computation is accurate enough, we need to
know:

How close can a floating point number be to an integer
multiple of π/2?

Even deriving the power series (for 0 < |x | < π):

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

is much harder than you might expect.

20

Why HOL Light?

We need a general theorem proving system with:

I High standard of logical rigor and reliability

I Ability to mix interactive and automated proof

I Programmability for domain-specific proof tasks

I A substantial library of pre-proved mathematics

Other theorem provers such as ACL2, Coq and PVS have also been
used for verification in this area.

21

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

The value of formal verification

Formal verification has contributed in many ways, and not only the
obvious ones:

I Uncovered bugs, including subtle and sometimes very serious
ones

I Revealed ways that algorithms could be made more efficient

I Improved our confidence in the (original or final) product

I Led to deeper theoretical understanding

This experience seems quite common.

22

Perspectives and future prospects

Formal verification is an important method for giving the highest
levels of assurance. But it is so difficult that is only deployed on a
relatively small number of critical components.

I We need more research on making formal verification more
efficient and automatic so it can be applied more widely, and
applied by relative non-experts.

I We need computer science curricula at universities to provide
more rigorous treatment of mathematical rigor, logic and
formal proof so that more programmers and engineers are able
to deploy formal techniques.

23

Perspectives and future prospects

Formal verification is an important method for giving the highest
levels of assurance. But it is so difficult that is only deployed on a
relatively small number of critical components.

I We need more research on making formal verification more
efficient and automatic so it can be applied more widely, and
applied by relative non-experts.

I We need computer science curricula at universities to provide
more rigorous treatment of mathematical rigor, logic and
formal proof so that more programmers and engineers are able
to deploy formal techniques.

23

Perspectives and future prospects

Formal verification is an important method for giving the highest
levels of assurance. But it is so difficult that is only deployed on a
relatively small number of critical components.

I We need more research on making formal verification more
efficient and automatic so it can be applied more widely, and
applied by relative non-experts.

I We need computer science curricula at universities to provide
more rigorous treatment of mathematical rigor, logic and
formal proof so that more programmers and engineers are able
to deploy formal techniques.

23

