
Extracting Test Problems from Real Applications

Extracting Test Problems

from Real Applications

John Harrison

Intel Corporation

• Applications of theorem proving

• Traditional ‘type 1’ problems

• Problems from formalization and verification

• Raw logging

• Higher-order to first-order reduction

• Some initial results

• A more sophisticated approach

• Summary

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Applications of theorem proving

Automated theorem proving is sometimes

pursued just for intellectual enjoyment.

But there are several significant applications,

including:

1. Solution of individual mathematical problems

(e.g. the Argonne group)

2. Formalization of mathematics (e.g. the Mizar

project)

3. Formal verification (e.g. Intel’s floating-point

work)

Most of the best-known test problems, e.g. the

TPTP suite, are heavily biased towards ‘type 1

problems’.

In this talk, we consider how to produce more

‘type 2 and 3’ problems.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Type 1 characteristics

The ‘type 1 problems’ are often designed

specifically as theorem prover test cases.

• Usually pure first order logic or equational

logic and often in clause form.

• Often stretch the abilities of older, and

sometimes present-day, systems, and may

need hours or days to solve.

• Typically slightly ‘artificial’ (cute algebraic

facts, combinatorial curiosities) and generally

small.

• Often axiomatized in special ways for

feasibility.

• Usually carefully formulated without

irrelevant material (NUM is one exception).

They quite accurately reflect activity of type 1,

but not so much types 2 and 3.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Type 1 examples

Examples include the ‘nonobvious’ Loś problem:

(∀x y z. P (x, y) ∧ P (y, z) ⇒ P (x, z))∧

(∀x y z. Q(x, y) ∧ Q(y, z) ⇒ Q(x, z))∧

(∀x y. P (x, y) ⇒ P (y, x))∧

(∀x y. P (x, y) ∨ Q(x, y))

⇒ (∀x y. P (x, y)) ∨ (∀x y. Q(x, y))

traditional group theory exercises:

(∀x y z. x · (y · z) = (x · y) · z)∧

(∀x. 1 · x = x)∧

(∀x. i(x) · x = 1)

⇒ ∀x. x · i(x) = 1

and truly difficult equational problems such as

the Robbins problem, xn = x in a ring implies

commutativity, etc.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Type 1: a guarded appreciation

Type 1 problems are representative of some of the

most impressive applications of automated

theorem proving.

They play a vital experimental role in pushing

automated theorem provers to the limit.

Moreover, many of them are particularly striking

or memorable.

However, we shouldn’t let this blind us that they

are not at all representative of more “workaday”

type 1 or 2 applications.

It’s definitely worth considering type 2 and 3

problems as well.

In fact, from a crudely pragmatic view, they may

be more important.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

A critique of formulation

Sometimes problems are formulated in artificial

ways to make them easier. An extreme example is

the use of P (x, y, z) instead of x · y = z, e.g.

(∀x. P (1, x, x))∧

(∀x. P (x, x, 1))∧

(∀u v w x y z. P (x, y, u) ∧ P (y, z, w)

⇒ (P (x, w, v) ⇔ P (u, z, v)))

⇒ ∀a b c. P (a, b, c) ⇒ P (b, a, c)

This is not so common nowadays.

However, one unfortunate historical relic survives

in the TPTP problem set: the curse of clausal

form.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Problems with clausal form

Many traditional theorem proving methods use

clausal form internally.

So formulating problems in clausal form allows

one to compare underlying algorithms more

precisely.

However, not all problems are naturally

formulated in clause form. The translation can

build in choices that can be difficulty for the

underlying prover to reverse or change, e.g.

(∃!x. f(g(x)) = x) ⇔ (∃!y. g(f(y)) = y)

Clausifying this directly leads to a problem

substantially harder than the two problems

obtained by clausifying the two implications

separately.

Claim: FOF should be the fundamental TPTP

category, not MIX.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Origins of type 2 and 3 problems

Most work in formalization of mathematics and

verification is done with interactive theorem

provers like Mizar, HOL, PVS, Coq.

Full automation of these tasks is not yet feasible,

and perhaps never will be.

However, these complication proofs contain many

“trivial” subtasks, and so it’s natural to exploit

automation here.

These subtasks have two connected

characteristics:

• Relatively easy

• Prover must solve them quickly

Claim: CASC should have a ‘blitz’ category.

10 seconds? 5 seconds? 1 second? One could

afford to try thousands of problems in a

reasonable time.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Not just first order logic!

Many of the routine tasks in verification are not

pure first order logic.

One common category is linear arithmetic (over

R, Z or N). Others are pure algebraic

rearrangement.

Among the most tedious to prove manually, but

easy and efficient to automate.

Claim: We need other categories beyond pure

first order logic

These might belong in TPTP, or in other suites.

Question: Is it feasible to solve these with first

order or equational provers, with suitable axioms?

There is currently a consortium connected with

FROCOS trying to collect such problems.

Perhaps we should also consider propositional

problems and higher order problems?

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Non-first-order examples

For example, the following HOL Light problem

arises in floating-point verification:

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

and the following is a lemma when proving that

every positive integer is the sum of four squares:

let LAGRANGE_IDENTITY = prove

(‘(w1 pow 2 + x1 pow 2 + y1 pow 2 + z1 pow 2) *

(w2 pow 2 + x2 pow 2 + y2 pow 2 + z2 pow 2) =

(w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2) pow 2 +

(w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2) pow 2 +

(w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2) pow 2 +

(w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2) pow 2‘,

REWRITE_TAC[REAL_POW_2] THEN INT_ARITH_TAC);;

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

HOL Light’s automated subsystems

The various classes of problems are usually solved

by fixed HOL functions, e.g. first order logic

problems (with equality) by MESON TAC or

ASM MESON TAC.

For example, two calls of ASM MESON TAC appear

in the proof of the wellfounded recursion theorem:

let WF_REC = prove

(‘WF(<<) ==> !H. (!f g x. (!z. z << x ==> (f z = g z))

==> (H f x = H g x))

==> ?f:A->B. !x. f x = H f x‘,

let lemma = prove_inductive_relations_exist

‘!f (x:A). (!z:A. z << x ==> R z (f z :B))

==> R x (H f x)‘ in

REWRITE_TAC[WF_IND] THEN REPEAT STRIP_TAC THEN

X_CHOOSE_THEN ‘R:A->B->bool‘

(ASSUME_TAC o last o CONJUNCTS) lemma THEN

SUBGOAL_THEN ‘!x:A. ?!y:B. R x y‘

(fun th -> ASM_MESON_TAC[th]) THEN

FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);;

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Raw logging

We can modify functions like ASM MESON TAC so

that they first record their problem argument in a

global variable and then proceed as usual.

We can then run various proof scripts, collect lots

of problems, and then finally output them in

some appropriate form.

However, all our formulas are HOL formulas,

generally not first order.

For example, the first ASM MESON TAC above

results, if we ignore some irrelevant assumptions,

in the following:

(∀a0 a1. R a0 a1 ⇔

∃f. a1 = H f a0∧

∀z. z ≪ a0 ⇒ R z (f z))∧

(∀x. ∃!y. R x y) ⇒ ∃f. ∀x. f x = H f x

Clearly this is a higher order problem.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

HOL-FOL translation

If it’s a higher order problem, why does

ASM MESON TAC solve it?

After all, it’s a standard implementation of first

order model elimination à la PTTP.

It includes a preprocessing step that performs

simple first-order reduction tricks.

Roughly, it eliminates currying and inserts

explicit “application” operations whenever a

function f is used both as a function and an

argument:

(∀a0 a1. R(a0, a1) ⇔

∃f. a1 = H(f, a0)∧

∀z. z ≪ a0 ⇒ R(z, @(f, z))∧

(∀x. ∃!y. R(x, y)) ⇒ ∃f. ∀x. @(f, x) = H(f, x)

This can now be proved (quite easily) in first

order logic with equality.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Improved logging

So, instead of tweaking ASM MESON TAC so that it

records the initial problem, we instead tweak it to

record the problems resulting from the initial

splitting and first order reduction.

On the plus side, this gives us problems in

essentially standard clausal form, with equality

eliminated, ready to be spat out in TPTP format

and then tackled by any first order prover.

On the negative side, we’d really rather avoid the

clausal form transformation and splitting to give

the raw first order problem.

However, instead of being a trivial tweak, that

would require a bit of reprogramming to separate

the two, which are currently intertwined in a

slightly involved way.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Linear arithmetic too

We also logged calls to the underlying linear

arithmetic package for the reals.

In this case, the problems are typically in fairly

standard form and no extensive translation is

needed.

Sometimes they involve multiplication and alien

terms.

However, after expanding out, simplifying, and

doing basic normalization, the problems can be

solved by linear arithmetic treating nonlinear and

alien terms as atomic.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

HOL Light code base (1)

We ran a lot of our standard “codebase” of HOL

Light proofs.

This codebase consists of 650,000 lines of HOL

proofs, including about 8900 calls to first order

automation and 7300 to linear arithmetic, e.g.

• HOL’s basic theories (like the wellfounded

recursion example above)

• Formalization of real analysis and

transcendental functions

• Intel floating-point verification proofs

including detailed theories of floating-point

numbers

• Development of complex numbers and proof

of Fundamental Theorem of Algebra

• Metatheory of logic, e.g. compactness for first

order logic, Tarski’s theorem on the

undefinability of truth.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

HOL Light code base (2)

As well as the substantial proof efforts, we re-ran

dozens of smaller miscellaneous proofs, e.g.

• Proof that exponentiation has a diophantine

representation

• Miscellaneous number theory like the trivial

n = 4 case of Fermat’s last theorem and

results on sums of squares

• Results about abstract reduction systems like

Newman’s Lemma

• Wellfoundedness of the multiset ordering

• Formalization of Dijkstra’s weakest

precondition results.

• Formalization of some compiler dataflow

analysis

• Various cute little facts and puzzles like (∀n :

N. f(n + 1) > f(f(n))) ⇒ ∀n : N. f(n) = n).

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

The fruits of logging

From running the kind of body of proofs

mentioned above, we obtained the following:

• 4837 first order logic problems in TPTP

format

• 3528 problems of linear arithmetic

We have not used the linear arithmetic problems

yet. But anyone who wants a copy is welcome to

have one.

We did make a few experiments with the first

order problems, trying a few prominent first order

provers.

Note that these prover versions are now a couple

of years old, and many now do much better.

The next table gives some of the ‘harder’

problems, with a time limit of 1000 CPU seconds.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Some results (1/2)

Problem Clauses Horn? Vampire Otter SETHEO

4501 50 Non - - 17

3879 31 Horn - - 6

4552 55 Non 124.78 836.78 221

4422 45 Non - - 1

4500 50 Non - - 1

3901 32 Horn - - 1

3878 31 Horn - - 1

3830 30 Non - - 1

3829 30 Non - - 1

3832 30 Non - - 1

3831 30 Non - - 1

4601 60 Non 209.77 - 1

4608 62 Non - 156.78 1

4644 73 Non 115.02 - 1

4650 74 Non 114.71 - 1

4652 74 Non 108.21 - 1

4646 73 Non 107.64 - 1

4651 74 Non 89.98 - 1

3820 30 Non 209.85 - 8

4645 73 Non 88.54 - 1

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Some results (2/2)

Problem Clauses Horn? Vampire Otter SETHEO

4627 69 Non 82.74 - 1

4653 74 Non 82.40 - 1

4626 68 Non 80.99 - 1

4647 73 Non 80.84 - 1

4219 40 Non 130.19 - 1

4218 40 Non 131.50 - 1

4217 40 Non 131.53 - 1

4318 42 Non 41.83 - 1

4216 40 Non 133.82 - 1

4093 36 Horn 22.01 - 1

4091 36 Horn 21.93 - 1

4690 83 Horn 103.12 - 1

4691 83 Horn 103.15 - 1

3759 29 Horn 377.53 11.52 1

3826 30 Non 41.18 - 1

3280 22 Non 150.69 9.55 1

4458 48 Horn - - 1

3828 30 Non 20.45 - 1

3827 30 Non 42.25 - 1

4459 48 Horn 66.62 - 1

3825 30 Non 32.88 - 1

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Observations

It was surprising that many provers found lots of

the problems quite challenging.

This despite the fact that HOL’s own first order

prover can solve them all in a few seconds

(exceptionally a minute).

In some cases, Vampire rejected formulas because

they involved terms that were “too big”.

But generally, we see that even very sophisticated

provers can be beaten by straightforward

algorithms for some problems.

SETHEO solved all the problems very quickly

(though the results shown use multiple parallel

sessions with different settings).

This isn’t surprising, since it is also based on

model elimination, like MESON TAC.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

The problem of self-selection

The relative success of SETHEO indicates why

these tests cannot be used to perform an

objective comparison between systems.

There is a problem of self-selection, because the

problems were exactly those that could be solved

by MESON TAC.

Plenty of failed calls to MESON TAC occur in

interaction with HOL, but these are not recorded

in the final proof scripts (except occasionally in

comments).

What can we do about this?

• Record failed MESON TAC attempts

• Produce logs independent of the use of

MESON TAC

Unfortunately, starting now, it would take years

to build up a decent stock of examples, so the

first alternative could only be a long-term project.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Recording HOL proofs

Another alternative is available. HOL is a strictly

foundational LCF-style prover:

• All its proofs are done using 10 very simple

low-level primitive rules

• Theorems are a type whose only constructors

are these primitive rules

Thus, it is only the work of 15 minutes to modify

the system so that theorems include a proof tree

giving details of how they were derived, and

primitive inference rules set up this field.

We can then find subtrees that involve only

“essentially first order” reasoning, regardless of

the top-level rules that were invoked by the user,

and save these as test cases.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Modifying the datatype of theorems

The standard datatype of theorems is just a list

of terms and another term, representing the

assumptions and conclusion of a single-conclusion

sequent:

type thm = Sequent of (term list * term);;

We just need to change this to include a proof

tree, with an inference rule and some structure of

hypothesis theorems:

type thm = Sequent of (term list * term) *

(string * syn list)

and syn = Thm of thm

| Term of term

| Type of hol_type

| Pair of syn * syn

| List of (syn list);;

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Modifying the primitive rules

Similarly, it’s easy to update the primitive rules.

The rule implementing reflexivity of equality is:

let REFL tm =

Sequent([],mk_eq(tm,tm));;

We just need to change this to record how the

theorem arose:

let REFL tm =

Sequent(([],mk_eq(tm,tm)),

("REFL",[Term tm]));;

Because theorems are treated as an abstract data

type, this change is completely transparent and

all HOL proofs now get recorded.

The only difference is that it runs more slowly

and requires huge amounts of memory.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Too low-level

Unfortunately, HOL is too strictly foundational!

Its primitive rules involve only the notion of

equality, and all the usual logical constants are

defined rather than primitive:

⊤ = (λx. x) = (λx. x)

∧ = λp. λq. (λf. f p q) = (λf. f ⊤ ⊤)

⇒ = λp. λq. p ∧ q = p

∀ = λP. P = λx. ⊤

∃ = λP. ∀Q. (∀x. P (x) ⇒ Q) ⇒ Q

∨ = λp. λq. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r

⊥ = ∀P. P

¬ = λt. t ⇒ ⊥

∃! = λP. ∃P ∧ ∀x. ∀y. P x ∧ P y ⇒ (x = y)

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Recording first order inferences

Thus, what may seem like a logical primitive, e.g.

CONJUNCT1:

Γ ⊢ p ∧ q

Γ ⊢ p
CONJUNCT1

actually expands into a number of primitive

higher-order equality rules. Moreover, MESON itself

uses higher-order rewriting to implement

Skolemization.

It’s very difficult to separate these from ‘real’

higher order steps.

The solution is to modify the next level of logical

rules to create proof trees treating them, and

applications of MESON itself, as atomic steps,

replacing the true proof tree.

This requires a bit more work, since there are

about 30 such rules, but once done, it is again

completely transparent higher up.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Current work

We have implemented all these proof recordings

and a way of discriminating between first-order

and non-first-order proof steps.

It is now easy to generate test cases whose proof

trees involve a chosen number of primitive (or

pseudo-primitive) logical rules.

By increasing this number, we can make more

and more difficult problems, and so are no longer

restricted to generating “easy” ones.

However, we still need to implement a nice first

order reduction without splitting and

clausification.

Not very much left to do, but we will need to

spend a while on the details, and sifting problems.

John Harrison Intel Corporation, 31 July 2002

Extracting Test Problems from Real Applications

Summary

• Traditional test suites for theorem provers

tend to concentrate on ‘type 1’ problems.

• Formalization and verification efforts are a

gold-mine of test problems, if only they can

be suitably extracted.

• It is relatively easy to simply log the problems

dealt with by existing automated subsystems.

• More work, but also more useful, is to extract

such test cases from actual proofs without

regard to the automation used to prove them.

• The advantage of an LCF prover like HOL is

that a few local proof-logging changes

automatically propagate to the proof system

as a whole.

• Of course, look out for the new problems in

next year’s CASC and the subsequent TPTP

update!

John Harrison Intel Corporation, 31 July 2002

