
Formal verification of floating-point algorithms 1

Formal verification of

floating-point algorithms

John Harrison

Intel Corporation

• Floating point algorithm verification

• HOL Light

• Floating point numbers and formats

• HOL floating point theory

• Division algorithms

• Square root algorithms

• Conclusions

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 2

Floating-point algorithm verification

Functions for computing common mathematical

functions are fairly mathematically subtle. This

applies even to relatively simple operations such

as division.

There have been some high-profile errors such as

the FDIV bug in some early Intel Pentium
processors.

Intel therefore uses formal verification to improve

the reliability and quality of the underlying

algorithms.

The work reported here is at the algorithmic

level, and is not concerned with gate-level circuit

descriptions.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 3

Levels of verification

We are verifying higher-level floating-point

algorithms based on assumed correct behavior of

hardware primitives.

gate-level description

fma correct

sqrt correct

6

6

We will assume that all the operations used obey

the underlying specifications as given in the

Architecture Manual and the IEEE Standard for

Binary Floating-Point Arithmetic.

This is a typical specification for lower-level

verification.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 4

Context of this work

• The algorithms considered here are

implemented in software (as part of math

libraries) and microcode in the CPU.

• Whatever the underlying implementation, the

basic algorithms and the mathematical details

involved are the same, and it makes sense to

consider them at the algorithmic level.

• We will focus on the algebraic operations of

division and square root for the Intel
Itanium processor family.

• Similar work is being undertaken for

transcendental functions, both for the

Itanium and Pentium 4 processor families.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 5

Quick introduction to HOL Light

HOL Light is one of the family of theorem provers

based on Mike Gordon’s original HOL system.

• An LCF-style programmable proof checker

written in CAML Light, which also serves as

the interaction language.

• Supports classical higher order logic based on

polymorphic simply typed lambda-calculus.

• Extremely simple logical core: 10 basic logical

inference rules plus 2 definition mechanisms.

• More powerful proof procedures programmed

on top, inheriting their reliability from the

logical core. Fully programmable by the user.

• Well-developed mathematical theories

including basic real analysis.

HOL Light is available for download from:

http://www.cl.cam.ac.uk/users/jrh/hol-light

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 6

Floating point numbers

There are various different schemes for floating

point numbers. Usually, the floating point

numbers are those representable in some number

n of significant binary digits, within a certain

exponent range, i.e.

(−1)s × d0.d1d2 · · · dn × 2e

where

• The field s ∈ {0, 1} is the sign

• The field d0.d1d2 · · · dn is the significand and

d1d2 · · · dn is the fraction. These are not

always used consistently; sometimes

‘mantissa’ is used for one or the other

• The field e is the exponent.

We often refer to p = n + 1 as the precision.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 7

Intel floating point formats

A floating point format is a particular allowable

precision and exponent range.

The Intel architectures support a multitude of

possible formats, e.g.

• IEEE single: p = 24 and −126 ≤ e ≤ 127

• IEEE double: p = 53 and −1022 ≤ e ≤ 1023

• IEEE double-extended: p = 64 and

−16382 ≤ e ≤ 16383

• Register format: p = 64 and

−65534 ≤ e ≤ 65535

There are various other hybrid formats, and a

separate type of parallel FP numbers, which is

SIMD single precision.

The highest precision, ‘register’, is normally used

for intermediate calculations in algorithms.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 8

HOL floating point theory (1)

We have formalized a generic floating point

theory in HOL, which can be applied to all the

Intel formats, and others supported in software

such as quad precision.

A floating point format is identified by a triple of

natural numbers fmt.

The corresponding set of real numbers is

format(fmt), or ignoring the upper limit on the

exponent, iformat(fmt).

Floating point rounding returns a floating point

approximation to a real number, ignoring upper

exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt)

for an exact value x, depending on the rounding

mode rc, which may be one of Nearest, Down, Up

and Zero.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 9

HOL floating point theory (2)

For example, the definition of rounding down is:

|- (round fmt Down x = closest

{a | a IN iformat fmt ∧ a <= x} x)

We prove a large number of results about

rounding, e.g. that a real number rounds to itself

if it is in the floating point format:

|- ¬(precision fmt = 0) ∧ x IN iformat fmt

=⇒ (round fmt rc x = x)

that rounding is monotonic:

|- ¬(precision fmt = 0) ∧ x <= y

=⇒ round fmt rc x <= round fmt rc y

and that subtraction of nearby floating point

numbers is exact:

|- a IN iformat fmt ∧ b IN iformat fmt ∧
a / &2 <= b ∧ b <= &2 * a

=⇒ (b - a) IN iformat fmt

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 10

Division and square root on Itanium

There are no Itanium instructions for division and

square root. Instead, approximation instructions

are provided, e.g. the floating point reciprocal

approximation instruction.

frcpa.sf f1, p2 = f3

In normal cases, this returns in f1 an

approximation to 1
f3

. The approximation has a

worst-case relative error of about 2−8.86. The

particular approximation is specified in the

architecture manual. Similarly, frsqrta returns

an approximation to 1√
f3

.

Software is intended to start from this

approximation and refine it to an accurate

quotient, using for example Newton-Raphson

iteration, power series expansions or any other

technique that seems effective.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 11

Correctness issues

The IEEE standard states that all the algebraic

operations should give the closest floating point

number to the true answer, or the closest number

up, down, or towards zero in other rounding

modes.

It is easy to get within a bit or so of the right

answer, but meeting the IEEE spec is

significantly more challenging.

In addition, all the flags need to be set correctly,

e.g. inexact, underflow,

Whatever the overall structure of the algorithm,

we can consider its last operation as yielding a

result y by rounding an exact value y∗. What is

the required property for perfect rounding?

We will concentrate on round-to-nearest mode,

since the other modes are either similar (in the

case of square root) or much easier (in the case of

division).

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 12

Condition for perfect rounding

A sufficient condition for perfect rounding is that

the closest floating point number to the exact

answer x is also the closest to y∗, the approximate

result before the last rounding. That is, the two

real numbers x and y∗ never fall on opposite sides

of a midpoint between two floating point numbers.

In the following diagram this is not true; x would

round to the number below it, but y∗ to the

number above it.

-
66

x y∗

How can we prove this?

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 13

Proving perfect rounding

There are two distinct approaches to justifying

perfect rounding:

• Specialized theorems that analyze the precise

way in which the approximation y∗ rounds

and how this relates to the mathematical

function required.

• More direct theorems that are based on

general properties of the function being

approximated.

We will demonstrate how both approaches have

been formalized in HOL.

• Verification of division algorithms based on a

special technique due to Peter Markstein.

• Verification of square root algorithms based

on an ‘exclusion zone’ method due to Marius

Cornea

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 14

Markstein’s main theorem

Markstein (IBM Journal of Research and

Development, vol. 34, 1990) proves the following

general theorem. Suppose we have a quotient

approximation q0 ≈ a
b

and a reciprocal

approximation y0 ≈ 1
b
. Provided:

• The approximation q0 is within 1 ulp of a
b
.

• The reciprocal approximation y0 is 1
b

rounded

to the nearest floating point number

then if we execute the following two fma (fused

multiply add) operations:

r = a − bq0

q = q0 + ry0

the value r is calculated exactly and q is the

correctly rounded quotient, whatever the current

rounding mode.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 15

Markstein’s reciprocal theorem

The problem is that we need a perfectly rounded

y0 first, for which Markstein proves the following

variant theorem.

If y0 is within 1ulp of the exact 1
b
, then if we

execute the following fma operations in

round-to-nearest mode:

e = 1 − by0

y = y0 + ey0

then e is calculated exactly and y is the correctly

rounded reciprocal, except possibly when the

mantissa of b is all 1s.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 16

Using the theorems

Using these two theorems together, we can obtain

an IEEE-correct division algorithm as follows:

• Calculate approximations y0 and q0 accurate

to 1 ulp (straightforward). [N fma latencies]

• Refine y0 to a perfectly rounded y1 by two

fma operations, and in parallel calculate the

remainder r = a − bq0. [2 fma latencies]

• Obtain the final quotient by q = q0 + ry0. [1

fma latency].

There remains the task of ensuring that the

algorithm works correctly in the special case

where b has a mantissa consisting of all 1s.

One can prove this simply by testing whether the

final quotient is in fact perfectly rounded. If it

isn’t, one needs a slightly more complicated proof.

Markstein shows that things will still work

provided q0 overestimates the true quotient.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 17

Initial algorithm example

Our example is an algorithm for quotients using

only single precision computations (hence suitable

for SIMD). It is built using the frcpa instruction

and the (negated) fma (fused-multiply-add):

1. y0 = 1
b
(1 + ǫ) [frcpa]

2. e0 = 1 − by0

3. y1 = y0 + e0y0

4. e1 = 1 − by1 q0 = ay0

5. y2 = y1 + e1y1 r0 = a − bq0

6. e2 = 1 − by2 q1 = q0 + r0y2

7. y3 = y2 + e2y2 r1 = a − bq1

8. q = q1 + r1y3

This algorithm needs 8 times the basic fma

latency, i.e. 8 × 5 = 40 cycles.

For extreme inputs, underflow and overflow can

occur, and the formal proof needs to take account

of this.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 18

Improved theorems

In proving Markstein’s theorems formally in

HOL, we noticed a way to strengthen them. For

the main theorem, instead of requiring y0 to be

perfectly rounded, we can require only a relative

error:

|y0 −
1

b
| < |1

b
|/2p

where p is the floating point precision. Actually

Markstein’s original proof only relied on this

property, but merely used it as an intermediate

consequence of perfect rounding.

The altered precondition looks only trivially

different, and in the worst case it is. However it is

in general much easier to achieve.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 19

Achieving the relative error bound

Suppose y0 results from rounding a value y∗
0 .

The rounding can contribute as much as
1
2 ulp(y∗

0), which in all significant cases is the

same as 1
2 ulp(1

b
).

Thus the relative error condition after rounding is

achieved provided y∗
0 is in error by no more than

|1
b
|/2p − 1

2
ulp(

1

b
)

In the worst case, when b’s mantissa is all 1s,

these two terms are almost identical so extremely

high accuracy is needed. However at the other

end of the scale, when b’s mantissa is all 0s, they

differ by a factor of two.

Thus we can generalize the way Markstein’s

reciprocal theorem isolates a single special case.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 20

Stronger reciprocal theorem

We have the following generalization: if y0 results

from rounding a value y∗
0 with relative error

better than d
22p :

|y∗
0 − 1

b
| ≤ d

22p
|1
b
|

then y0 meets the relative error condition for the

main theorem, except possibly when the mantissa

of b is one of the d largest, i.e. when considered

as an integer is 2p − d ≤ m ≤ 2p − 1.

Hence, we can compute y0 more ‘sloppily’, and

hence perhaps more efficiently, at the cost of

explicitly checking more special cases.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 21

An improved algorithm

The following algorithm can be justified by

applying the theorem with d = 165, explicitly

checking 165 special cases.

1. y0 = 1
b
(1 + ǫ) [frcpa]

2. d = 1 − by0 q0 = ay0

3. y1 = y0 + dy0 r0 = a − bq0

4. e = 1 − by1 y2 = y0 + dy1 q1 = q0 + r0y1

5. y3 = y1 + ey2 r1 = a − bq1

6. q = q1 + r1y3

On a machine capable of issuing three FP

operations per cycle, this can be run in 6 FP

latencies.

The current Itanium can only issue two FP

instructions per cycle, but since it is fully

pipelined, this only increases the overall latency

by one cycle, not a full FP latency. Thus the

whole algorithm runs in 31 cycles.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 22

The square root algorithm

1. y0 = 1√
a
(1 + ǫ) frsqrta

b = 1
2a Single

2. z0 = y2
0 Single

S0 = ay0 Single

3. d = 1
2 − bz0 Single

k = ay0 − S0 Single

H0 = 1
2y0 Single

4. e = 1 + 3
2d Single

T0 = dS0 + k Single

5. S1 = S0 + eT0 Single

c = 1 + de Single

6. d1 = a − S1S1 Single

H1 = cH0 Single

7. S = S1 + d1H1 Single

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 23

Condition for perfect rounding

Recall the general condition for perfect rounding.

We want to ensure that the two real numbers
√

a

and S∗ never fall on opposite sides of a midpoint

between two floating point numbers, as here:

-
66√

a S∗

Rather than analyzing the rounding of the final

approximation explicitly, we can just appeal to

general properties of the square root function.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 24

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

=⇒ abs(x - y) < abs(x - m))

=⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+2.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 25

Difficult cases

So to ensure the equal rounding property, we need

to make the final approximation before the last

rounding accurate to more than twice the final

accuracy.

The fused multiply-add can help us to achieve just

under twice the accuracy, but to do better is slow

and complicated. How can we bridge the gap?

Only a fairly small number of possible inputs a

can come closer than say 2−(2p−1). For all the

other inputs, a straightforward relative error

calculation (which in HOL we have largely

automated) yields the result.

We can then use number-theoretic reasoning to

isolate the additional cases we need to consider,

then simply try them and see! More than likely

we will be lucky, since all the error bounds are

worst cases and even if the error is exceeded, it

might be in the right direction to ensure perfect

rounding anyway.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 26

Isolating difficult cases

By some straightforward mathematics,

formalizable in HOL without difficulty, one can

show that the difficult cases have mantissas m,

considered as p-bit integers, such that one of the

following diophantine equations has a solution k

for d a small integer. (Typically ≤ 10, depending

on the exact accuracy of the final approximation

before rounding.)

2p+2m = k2 + d

or

2p+1m = k2 + d

We consider the equations separately for each

chosen d. For example, we might be interested in

whether:

2p+1m = k2 − 7

has a solution. If so, the possible value(s) of m

are added to the set of difficult cases.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 27

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2p+1m = k2 + d) =⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no

solutions. In general, we recurse down to an

equation that is trivially unsatisfiable, as here, or

immediately solvable. One equation can split into

two, but never more.

John Harrison Intel Corporation, 1 March 2001

Formal verification of floating-point algorithms 28

Conclusions

Because of HOL’s mathematical generality, all the

reasoning needed can be done in a unified way

with the customary HOL guarantee of soundness:

• Underlying pure mathematics

• Formalization of floating point operations

• Proof of precise Markstein-type theorems

• Proof of basic exclusion zone properties

• Routine relative error computation for the

final result before rounding

• Number-theoretic isolation of difficult cases

• Explicit computation with those cases

Moreover, because HOL is programmable, many

of these parts can be, and have been, automated.

The detailed examination of the proofs that

formal verification requires threw up significant

improvements that have led to some faster

algorithms.

John Harrison Intel Corporation, 1 March 2001

