
Formal Verification at Intel 1

Formal Verification

at Intel

John Harrison

Intel Corporation

• The cost of bugs

• Testing and formal verification

• Automated and general methods

• HOL Light

• Floating point verification

• Tangent example

• Square root example

• Conclusions

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 2

The cost of bugs

Computers are often used in safety-critical

systems where a failure could cause loss of life.

Even when not a matter of life and death, bugs

can be financially serious if a faulty product has

to be recalled or replaced.

• 1994 FDIV bug in the IntelPentium
processor: US $500 million.

• Today, new products are ramped much

faster...

So Intel is especially interested in all techniques

to reduce errors.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 3

Complexity of designs

At the same time, market pressures are leading to

more and more complex designs where bugs are

more likely.

• A 4-fold increase in bugs in Intel processor

designs per generation.

• Approximately 8000 bugs designed into the

Pentium 4 (‘Willamette’).

Fortunately, pre-silicon detection rates are now

well over 99.5%.

Just enough to tread water...

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 4

Limits of testing

Bugs are usually detected by extensive testing,

including pre-silicon simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers

(possible inputs to an adder).

• Vastly higher number of possible states of a

complex microarchitecture.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 5

Formal verification

Formal verification: mathematically prove the

correctness of a design with respect to a

mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 6

Verification vs. testing

Verification has some advantages over testing:

• Exhaustive.

• Improves our intellectual grasp of the system.

However:

• Difficult and time-consuming.

• Only as reliable as the formal models used.

• How can we be sure the proof is right?

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 7

Analogy with mathematics

Sometimes even a huge weight of empirical

evidence can be misleading.

• π(n) = number of primes ≤ n

• li(n) =
∫ n

0
du/ln(u)

Littlewood proved in 1914 that π(n) − li(n)

changes sign infinitely often.

No change of sign at all had ever been found

despite testing up to n = 1010 (in the days before

computers).

Similarly, extensive testing of hardware or

software may still miss errors that would be

revealed by a formal proof.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 8

Formal verification is hard

Writing out a completely formal proof of

correctness for real-world hardware and software

is difficult.

• Must specify intended behaviour formally

• Need to make many hidden assumptions

explicit

• Requires long detailed proofs, difficult to

review

The state of the art is quite limited.

Software verification has been around since the

60s, but there have been few major successes.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 9

Faulty hand proofs

“Synchronizing clocks in the presence of faults”

(Lamport & Melliar-Smith, JACM 1985)

This introduced the Interactive Convergence

Algorithm for clock synchronization, and

presented a ‘proof’ of it.

• Presented five supporting lemmas and one

main correctness theorem.

• Lemmas 1, 2, and 3 were all false.

• The proof of the main induction in the final

theorem was wrong.

• The main result, however, was correct!

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 10

Machine-checked proof

A more promising approach is to have the proof

checked (or even generated) by a computer

program.

• It can reduce the risk of mistakes.

• The computer can automate some parts of

the proofs.

There are limits on the power of automation, so

detailed human guidance is usually necessary.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 11

Automatic verification?

Many problems can be attacked using decision

methods with (in principle!) limited human

intervention, e.g.

• Boolean equivalence checking

• Temporal logic model checking

• Symbolic trajectory evaluation

However, sometimes we need more general

theorem proving, especially for the kinds of

applications I’m interested in...

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 12

Levels of verification

My job involves verifying higher-level

floating-point algorithms based on assumed

correct behavior of hardware primitives.

gate-level description

fma correct

sin correct

6

6

We will assume that all the operations used obey

the underlying specifications as given in the

Architecture Manual and the IEEE Standard for

Binary Floating-Point Arithmetic.

This is a typical specification for lower-level

verification (someone else’s job).

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 13

The spectrum of theorem provers

From interactive proof checkers to fully automatic

theorem provers.

AUTOMATH (de Bruijn)

Stanford LCF (Milner)

Mizar (Trybulec)

. . .

. . .

PVS (Owre, Rushby, Shankar)

. . .

. . .

ACL2 (Boyer, Kaufmann, Moore)

Otter (McCune)

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 14

HOL Light

HOL Light is based on the approach to theorem

proving pioneered in Edinburgh LCF in the 70s.

• All theorems created by low-level primitive

rules.

• Guaranteed by using an abstract type of

theorems; no need to store proofs.

• ML available for implementing derived rules

by arbitrary programming.

The system can be extended reliably without

making unsafe modifications

The user controls the means of production (of

theorems).

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 15

Floating point verification

We’ve used HOL Light to verify the accuracy of

floating point algorithms (used in hardware and

software) for:

• Division and square root

• Transcendental function such as sin, exp,

atan.

This involves background work in formalizing:

• Real analysis

• Basic floating point arithmetic

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 16

Existing real analysis theory

• Definitional construction of real numbers

• Basic topology

• General limit operations

• Sequences and series

• Limits of real functions

• Differentiation

• Power series and Taylor expansions

• Transcendental functions

• Gauge integration

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 17

Examples of useful theorems

|- sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)

|- tan(&n * pi) = &0

|- &0 < x /\ &0 < y

==> (ln(x / y) = ln(x) - ln(y))

|- f contl x /\ g contl (f x)

==> (g o f) contl x

|- (!x. a <= x /\ x <= b

==> (f diffl (f’ x)) x) /\

f(a) <= K /\ f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0)

==> f(x) <= K)

==> !x. a <= x /\ x <= b ==> f(x) <= K

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 18

HOL floating point theory

Generic floating point theory in HOL.

Can be applied to all the required formats, and

others supported in software.

Precise specification of floating point rounding,

floating point exceptions etc. Typical theorems

include monotonicity of rounding:

|- ~(precision fmt = 0) /\ x <= y

==> round fmt rc x <= round fmt rc y

and subtraction of nearby floating point numbers:

|- a IN iformat fmt /\ b IN iformat fmt /\

a / &2 <= b /\ b <= &2 * a

==> (b - a) IN iformat fmt

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 19

Example: tangent algorithm

Works essentially as follows.

• The input number X is first reduced to r

with approximately |r| ≤ π/4 such that

X = r + Nπ/2 for some integer N . We now

need to calculate ±tan(r) or ±cot(r)

depending on N modulo 4.

• If the reduced argument r is still not small

enough, it is separated into its leading few

bits B and the trailing part x = r − B, and

the overall result computed from tan(x) and

pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for

tan(r), cot(r) or tan(x) as appropriate.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 20

Overview of the verification

To verify this algorithm, we need to prove:

• The range reduction to obtain r is done

accurately.

• The mathematical facts used to reconstruct

the result from components are applicable.

• The pre-stored constants such as tan(B) are

sufficiently accurate.

• The power series approximation does not

introduce too much error in approximation.

• The rounding errors involved in computing

with floating point arithmetic are within

bounds.

Most of these parts are non-trivial. Moreover,

some of them require more pure mathematics

than might be expected.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 21

Why mathematics?

Controlling the error in range reduction becomes

difficult when the reduced argument X − Nπ/2 is

small.

To check that the computation is accurate

enough, we need to know:

How close can a floating point number be

to an integer multiple of π/2?

Even deriving the power series (for 0 < |x| < π):

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

is much harder than you might expect.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 22

Square root example

Several square root algorithms work by a final

rounding of a more accurate intermediate result

S∗. For perfect rounding, we should ensure that

the two real numbers
√

a and S∗ never fall on

opposite sides of a midpoint between two floating

point numbers, as here:

-
66√

a
S∗

Rather than analyzing the rounding of the final

approximation explicitly, we can just appeal to

general properties of the square root function.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 23

Exclusion zones

It would suffice if we knew for any midpoint m

that:

|
√

a − S∗| < |
√

a − m|
In that case

√
a and S∗ cannot lie on opposite

sides of m. Here is the formal theorem in HOL:

|- ¬(precision fmt = 0) ∧
(∀m. m IN midpoints fmt

⇒ abs(x - y) < abs(x - m))

⇒ (round fmt Nearest x =

round fmt Nearest y)

And this is possible to prove, because in fact

every midpoint m is surrounded by an ‘exclusion

zone’ of width δm > 0 within which the square

root of a floating point number cannot occur.

However, this δ can be quite small, considered as

a relative error. If the floating point format has

precision p, then we can have δm ≈ |m|/22p+3.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 24

Difficult cases

So to ensure the equal rounding property, we need

to make the final approximation before the last

rounding accurate to more than twice the final

accuracy.

The fused multiply-add (fma) can help us to

achieve just under twice the accuracy, but to do

better is slow and complicated. How can we

bridge the gap?

Only a fairly small number of possible inputs a

can come closer than say 2−(2p−1). For all the

other inputs, a straightforward relative error

calculation (which in HOL we have largely

automated) yields the result.

To obtain the complete result, we isolate all

special cases number-theoretically, and explicitly

“run” the algorithm on them inside the logic.

This approach is due to Marius Cornea, and is

especially amenable to semi-automated

formalization.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 25

Isolating difficult cases

By some straightforward mathematics,

formalizable in HOL without difficulty, one can

show that the difficult cases have mantissas m,

considered as p-bit integers, such that one of the

following diophantine equations has a solution k

for d a small integer. (Typically ≤ 10, depending

on the exact accuracy of the final approximation

before rounding.)

2p+2m = k2 + d

or

2p+1m = k2 + d

We consider the equations separately for each

chosen d. For example, we might be interested in

whether:

2p+1m = k2 − 7

has a solution. If so, the possible value(s) of m

are added to the set of difficult cases.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 26

Solving the equations

It’s quite easy to program HOL to enumerate all

the solutions of such diophantine equations,

returning a disjunctive theorem of the form:

(2p+1m = k2 + d) ⇒ (m = n1) ∨ . . . ∨ (m = ni)

The procedure simply uses even-odd reasoning

and recursion on the power of two (effectively

so-called ‘Hensel lifting’). For example, if

225m = k2 − 7

then we know k must be odd; we can write

k = 2k′ + 1 and get the derived equation:

224m = 2k′2 + 2k′ − 3

By more even/odd reasoning, this has no

solutions. In general, we recurse down to an

equation that is trivially unsatisfiable, as here, or

immediately solvable. One equation can split into

two, but never more.

John Harrison Intel Corporation, 21 June 2002

Formal Verification at Intel 27

Conclusions

• Formal verification is industrially important.

• For high-level algorithms we need a general

theorem prover and formalized mathematics.

• A large part of the work involves building up

general theories about both pure mathematics

and special properties of floating point

numbers.

• It is easy to underestimate the amount of

pure mathematics needed for obtaining very

practical results.

• The mathematics required is often the sort

that is not found in current textbooks: very

concrete results but with a proof!

• Using HOL Light, we can confidently

integrate all the different aspects of the proof,

using programmability to automate tedious

parts.

John Harrison Intel Corporation, 21 June 2002

