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What is reflection?

Stepping back from the straightforward use of a formal system and
reasoning about it (‘reflecting upon it’).

e EXploiting the syntax to prove general/meta theorems
e Asserting consistency or soundness

Similar concept in programming where programs can examine and
modify their own syntax [Brian Cantwell Smith 1984].

The ‘reflection principle’ in ZF set theory is rather different.



Logical power of reflection

The process of reflection may involve:
e Adding new theorems that were not provable before
e Adding a new, but conservative, rule to the logic
e Making no extension of the logic

[Giunchiglia and Smail 1989] use ‘reflection principles’ to refer to
logic-strengthening rules only, but use ‘reflection’ to describe the
process in all cases.



Reflection principles

The classic reflection principle is an assertion of consistency.

More generally, we can assert the ‘local reflection schema’:

= Pr("¢") = ¢
By Godel’'s Second Incompleteness Theorem, neither is provable in
the original system, so this makes the system stronger.

The addition of reflection principles can then be iterated transfinitely
[Turing 1939], [Feferman 1962], [Franzén 2002].



A conservative reflection rule

Consider instead the following reflection rule:
- Pr("¢’)
=

Assuming that the original logic is >-sound, this is a conservative
extension.

On the other hand, it does make some proofs much shorter.

Whether it makes any interesting ones shorter is another matter.



Total internal reflection

We can exploit the syntax-semantics connection without making any
extensions to the logical system.

This has been done quite often in HOL, but not considered as
‘reflection’.

It's usually called 'using proforma theorems’.

However, as | understand it, this is essentially what is called
‘reflection’ in Coq.



Calculation and proof in Coq

In Coq and other constructive type theories:

There is a distinct notion of ‘definitional’ equality.

One can consider this as formalizing the notion of a ‘calculation’,
as distinct from a proof

Coq’s primitive core therefore includes a special reduction engine

This may make reduction much more efficient than conventional
equality reasoning.

On the other hand, it makes the logical core more complicated.



Calculation and proof in HOL

In HOL and similar classical provers, however:
e There is no such formal distinction, and only one kind of equality.

e Calculations are implemented (via programmability) in terms of
iInferences.

e Thus, calculations are just a particular case of proofs.

e The logical core is simpler both conceptually and practically
e The specific reduction strategy is precisely controllable.

e However, reduction is somewhat less efficient.

Since HOL does not save proofs, the issue of proof construction
during the calculation is not as significant as it would be in Coq,.



Reflection in Coq and HOL

| suspect that proforma theorems in HOL and reflection in Coq are

essentially the same:
Syntax to semantics

f(x) < “f(x)]
Syntactic
f transform
T .

Semantics to syntax
Both achieve a transformation = — f(x) using a syntactic transform.



The difference

The main difference is that:

e In HOL, the syntactic transformations are done by ordinary
Inference

e In Coq, they are done by the special reduction engine

Some things like ring normalization are done directly in HOL, but
using reflection in Coq.

The main motivation in Cogq must be to avoid creating proofs (?)

Nevertheless, even in HOL the technique is often very useful.



Ring normalization results

HOLs normalizer and the Coq “Rational " tactic seem to have
comparable performance on tests from Hilbert-Waring problem
[Nathanson 1996], though Coqg’s “Ring ” is much worse.

Problem HOL normalizer | Coq “Rational ”
LAGRANGE 4 0.3 2.7
LAGRANGE 8 2.0 47.0
LIOUVILLE 0.6 1.4
FLECK 9.9 17.0
HURWITZ 124.6 389.0
SCHUR 268.5 1428.0

For comparison, SCHUR takes 0.06 seconds in PARI/GP.
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Presburger arithmetic

Presburger arithmetic is the decidable theory of linear arithmetic over
Z. (or equally well N).

A nice example of reflection in HOL is the quantifier elimination step
in Cooper’s algorithm for this theory.

Using a proforma theorem, we can prove the main transformation
once and for all, then apply it quite efficiently in particular cases.

The rest of my talk will show how this works.
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The syntax of formulas

We first define a HOL type for the relevant class of formulas:

let cform _INDUCT,cform_RECURSION = define_type
"cform = Lt Int

Gt int

Eq Int

Ne int

Divides int int

Ndivides int int

And cform cform

Or cform cform

Nox bool";

That is, quantifier-free first order formulas in the language of
arithmetic, assumed in NNF.
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The semantics of formulas

The meaning of these formulas is now defined recursively:

let interp = new_recursive_definition cform_ RECURSION
‘(interp x (Lt €) = x + e < &0) A
(interp x (Gt e) = x + e > &0) A
(interp x (Egq e) = (x + e = &0)) A
(interp X (Ne e) = "(x + e = &0)) A
(interp x (Divides ¢ e) = ¢ divides (x + e)) A
(interp x (Ndivides ¢ e) = “(c divides (x + e))) A
(interp X (And p ) = interp x p N\ interp x q) A
(interp x (Or p q) = Interp x p V interp x g) A\
(interp x (Nox P) = P)%;



Syntactic transformations

We can now define the syntactic transformation defined by Cooper,
e.g. the ‘minus infinity’ version vy_ ., of a formula :

let minusinf = new_recursive_definition cform_ RECURSION
‘(minusinf (Lt e) = Nox T) A
(minusinf (Gt e) = Nox F) A
(minusinf (Eq e) = Nox F) A
(minusinf (Ne e) = Nox T) A
(minusinf (Divides ¢ e) = Divides ¢ e) N
(minusinf (Ndivides ¢ e) = Ndivides c¢c e) A\
(minusinf (And p ) = And (minusinf p) (minusinf q)) A
(minusinf (Or p ) = Or (minusinf p) (minusinf q)) A
(minusinf (Nox P) = Nox P)%;
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Other syntactic notions

And similarly the ‘B-set’ of a formula:

let Bset = new_recursive_definition cform RECURSION
‘(Bset (Lt €) = {H) A
(Bset (Gt e) = {(--e)}) N
(Bset (Eq e) = {(--(e + &1))}) A
(Bset (Ne e) = {(--e)p) N
(Bset (Divides c e) = {H) N
(Bset (Ndivides c e) = {}h) A
(Bset (And p q) = (Bset p) UNION (Bset q)) N\
(Bset (Or p q) = (Bset p) UNION (Bset q)) N
(Bset (Nox P) = {})5;
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Auxiliary concept

We also define a predicate asserting that the moduli of any
congruence appearing in a formula divide some integer d.

let alldivide = new_recursive_definition cform_RECURSIO
‘(alldivide d (Lt ) = T) A

(alldivide d (Gt e) = T) A

(alldivide d (Eg e) = T) A

(alldivide d (Ne e) = T) A

(alldivide d (Divides ¢ e) = c divides d) A

(alldivide d (Ndivides ¢ e) = c divides d) A

(alldivide d (And p q) = alldivide d p A alldivide d q)
(alldivide d (Or p q) = alldivide d p A\ alldivide d Q)
(alldivide d (Nox P) = T)%;



Cooper’'s main result

We can now state, and prove by induction over formulas, the main
transformation in Cooper’s algorithm:

|- !p d. alldivide d p A &0 < d
==> ((?X. interp X p) =
?. &1 <= jNj<=dAN
(interp J (minusinf p) V
?b. b IN Bset p A interp (b + j) p))

This is a direct formulation of the main result in Cooper’s paper.
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Applying the theorem

To apply the theorem in a particular case, we start with the innermost
guantifier and:

e Put the body into a canonical form

e Map it into the interpretation of a formula by rewriting
‘backwards’ with the definition of interp

e Apply Cooper’s main transformation to get a new formula

e Map back to the semantics, by rewriting ‘forwards’ with the
definition of interp

Using the usual programmability, all this is automated, and
reasonably efficient.

The overall quantifier elimination procedure just iterates this process
inside-out.
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Examples

#COOPER_CONV ‘Ix. a < &3 * x ==> b < &3 *» x'j;

it : thm =

|- (Ix. a < &3 * X ==> Db < &3 * X) =
(C(&3 divides a + &1) V &0 < a + -- &l * b+ &1) N
(((&3 divides a + &2) V &0 < a + -- &1 * b + &2)) N
(C(&3 divides a + &3) V &0 < a + -- &1 * b + &3)

#COOPER_CONV ‘Ix. (&2 divides x) N\ &3 divides (x - &1) =
&12 divides (x - &1) VV &12 divides (x - &7)‘;;

it : thm =
|- (IX. "(&2 divides x) N &3 divides x - &1 =

&12 divides x - &1 V &12 divides x - &7) = T
#COOPER_CONV fIx. x >= &8 ==> ?2u v. u >= &0 N v >= &0 A\

x =&3 * u + &5 * V);

it : thm =
|- (IX. X >= &8

==> (2uv. u> &0 ANv > &0 N (X = &3 * U+ &5

* V) =T
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Conclusions

There is an established method in the HOL community for using

‘proforma theorems’ to implement inference patterns once and for all.

e It seems very similar to the use of reflection in Coq

e It is not as critical (because we don’t worry about proof terms)
but can still be useful

Another further step is to extract the syntactic object as a program
and run it externally.

This could really improve efficiency more dramatically, but has its
own drawbacks.
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