The HOL Light formalization of Euclidean space

John Harrison
Intel Corporation

JMM special session on Formal Mathematics for Mathematicians

January 8th, 2011 (09:30-10:00)

Summary

e History of this formalization

e Encoding trick for R"

e \Vectors, matrices and linear algebra
e Topology, convexity and polyhedra
e Analysis, integration and measure

e Complex analysis

History of this formalization

This formalization began following a discussion at NYU in February
2004, in an attempt to answer the guestion

How to formalize Euclidean spacein a natural and streamlined way in
HOL Light, with the goal of supporting the Flyspeck project?

Although Flyspeck is mainly concerned with R?, we try to work in the
more general setting of R where possible.

The general theory has also been applied to the special case of R?
and used in a further development of complex analysis.

Authorship and acknowledgements

As well as the present speaker, others have contributed substantially:

e Tom Hales and Flyspeck group: the further development and
application to the Flyspeck project, as well as many lemmas here
and much of the motivation.

e Lars Schewe: several results on affine dependence and convex
sets, Radon’s theorem.

e Marco Maggesi, Graziano Gentili and Gianni Ciolli: further
development of complex analysis including higher derivatives
and the first and second Cartan theorems.

e Valentina Bruno: Cauchy’s inequality, analytic continuation,
maximum modulus principle, open mapping theorem, Schwarz’s
lemma.

The problem with simple type theory

Can work over abstract spaces but then parametrization is heavy.
We would like each R" to be a type in simpletypetheory.
For any fixed n we can use n-tuples, e.g. R x R for R?.

For general n, using a set/predicate is OK, but then the type system
Isn’t helping us much.

Yet we have no dependent types so we can’'t have a type R" depend
on a term n.

A parochial problem

Defining spaces such as R" presents no problem for many
foundational systems.

e Untyped systems such as set theory (ACL2, B prover, Mizar, ...

e Richer dependent type theories (Cog, MetaPRL, PVS, ...)

However, there are reasons to stick to simple type theory.

Several highly developed provers based on simple type theory
(HOL4, HOL Light, IMPS, Isabelle/HOL, ...)

Our solution

For R"™ use the function space 7 — R where |7| = n.

With some technical groundwork, this gives quite a nice solution:
e Operations can be defined generically with no parametrization
e Use polymorphic type variables in place of numeric parameters
e Use constructors like disjoint sum for "arithmetic” on indices
e Theorems about R? etc. are really instances of results for R“

Main downside: types are still not completely ‘first class’, so can’t
trivially do induction on dimension etc.

Gory details

Define a binary type constructor “ .

Second argument is coerced to size 1 if infinite.
Indexing function ($):A"N->num->A
Components are x$1 , x$2, x$3 etc.

Special notion of lambda-binding for componentwise expressions so
that (lambda i. t[i)$ = t[j]

Basic definitions

|- Xx + y = lambda i. x$i + y$i
|- ¢ % x = lambda i. c * XS

|- vec n = lambda i. &n
For summations, looks similarto z -y = >_" | z;y;:

|- (x:real’N) dot (y:real’'N) =
sum(1..dimindex(:N)) (Al X8+ y$i)

Norms etc.

Define some of the usual vector notions:

|- norm x = sqgrt(x dot Xx)
|- dist(X,y) = norm(x - vy)

|- orthogonal X y & (x dot y = &0)
and linear functions:

|- linear (f:real"M->real"N) &

(VX y. fx +y) = f(x) + f(y))
(Ve x. flc % x) = ¢ % f(x))

Matrices

Encode M x N matrices by (R™)M. Multiplication:

|- (A:real’N"M) ** (B:real’P"N) =
lambda 1 . sum (1..dimindex(UNIV:N->bool))
(Ak. A$iISk * B$kS))

Types give a natural way of enforcing dimensional compatibility in
matrix multiplication.

|- VA:rreal’'N"M. linear(AX. A #x X)

|- Vfireal"M->real"N.

linear f = VX. matrix f ** X = f(X)
|- Vf g. linear f A linear g
= (matrix(g o f) = matrix g ** matrix f)

10

Topology

Induction over dimension in Heine-Borel and Brouwer are OK:

|- compact s <
vi:num->real”N.
(Vn. f(n) IN s)
= dlr. I IN s A (Vmn m<n = r(m < r(n))
((f o r) --> 1) sequentially

|- compact s <« bounded s A closed s
|- V frreal’N->real N.
compact s A convex s A (s = {}) A

f continuous _on s A IMAGE f s SUBSET s
= IX. X INs A fx =x

11

Convex sets and polyhedra

Classic properties of convex sets such as Radon’s theorem

|- Vc. affine_dependent c
= dm p. m SUBSET cA p SUBSET c A DISJOINT m |
—(DISJOINT (convex hull m) (convex hull p))

and results about polytopes and polyhedra, their faces etc.
|- polytope s <=> Jv. FINITE v A s = convex hull v
|- polyhedron s <=>
3f. FINITE f A S = INTERS f A
vh. h INf = da b. —-(a =vec 0) A
h={x]|adot x<=b }

|- Vs. polytope s <=> polyhedron s A bounded s

12

Analysis

Usual Fréchet derivative:

|- (f has_derivative f) (at Xx) &
linear f’ A
(C Ay. inv(norm(y - x)) % (f(y) - (f(x) + F(y - x))))
--> vec 0)
(at x)

and typical theorems:

|- (f has_derivative f) (at Xx) A
(g has_derivative g’) (at (f x))
= ((g o f) has derivative (g’ o f)) (at x)

13

Integration and measure

Kurzweil-Henstock gauge integral for functions RM — R¥:

- Vvf g h s.
(Vk. (f k) integrable on s) A h integrable on s
(Vk x. X IN s = norm(f k x) <= drop(h X)) A
(VX. X IN's = ((Ak. f k xX) --> g X) sequentially)
= @ integrable on s A
((Ak. integral s (f k)) --> integral s Q)
sequentially

and Lebesgue measure as integral of characteristic function:

|- Vfreal’N->real N.
linear f /A measurable s
= (IMAGE f s) has_measure
(abs(det(matrix f)) * measure S)

14

Complex analysis (1)

Define complex derivatives and analytic functions, and relate it to
general differentiability in Euclidean space:

|- Vi z. f complex_differentiable at z <=>
f differentiable at z A
(jacobian f (at z))$1$1 =
(jacobian f (at z))$2%$2 A
(jacobian f (at z))$1%$2 =
--((jacobian f (at z))$2%1)

Many other analytic theorems are proved.

15

Complex analysis (2)

More interesting theorems involve contour integrals, like Cauchy’s
Integral formula:

- Vvfs kg z
convex s A FINITE k A f continuous on s A
(VXx. x IN interior(s) DIFF k
= f complex_differentiable at Xx) A
z IN interior(s) DIFF k A
valid_path ¢ A
(path_image g) SUBSET (s DELETE 2z) A
pathfinish g = pathstart ¢
= ((Aw. f(w) / (w - z)) has_path_integral
(Cx(&2 =+ pi) =* i * winding_number(g,z) * 1(2)))
g

16

Automated reasoning routines

As well as theorems, we have also developed a few convenient
automated proof tools:

e Simple routine for automatically proving universally quantified
vector formulas ‘componentwise’

e More sophisticated quantifier elimination for vectors, based on
an idea of Solovay.

e ‘Without loss of generality’ tactics for exploiting symmetries and
Invariances, especially in geometry.

17

WLOG example

g ‘' Vs areal'N.
closed s A —(s = {})
= X. X INs A
Vy. ¥y IN s = dist(a,x) <= dist(a,y)’;;

With a single application of our tactic, we can suppose the point in
guestion is the origin:

e(GEOM_ORIGIN_TAC ‘a:real’N";;
val it . goalstack = 1 subgoal (1 total)

‘Vs. closed s A =(s = {})
= dX. X IN s A
Vy. y IN s = dist(vec 0,x) <= dist(vec 0,y)’

18

Summary

Simple but apparently effective representational trick
Many definitions and theorems have a very natural formulation
Some potential difficulties over induction on dimension etc.

Has been developed into a substantial library with many classic
theorems

Supplemented with some convenient proof tools
Seems to provide a good foundation for Flyspeck work

Also used for a significant development of complex analysis

19

