
The HOL Light formalization of Euclidean space

John Harrison
Intel Corporation

JMM special session on Formal Mathematics for Mathematicians

January 8th, 2011 (09:30–10:00)

0

Summary

• History of this formalization

• Encoding trick for R
n

• Vectors, matrices and linear algebra

• Topology, convexity and polyhedra

• Analysis, integration and measure

• Complex analysis

1

History of this formalization

This formalization began following a discussion at NYU in February
2004, in an attempt to answer the question

How to formalize Euclidean space in a natural and streamlined way in
HOL Light, with the goal of supporting the Flyspeck project?

Although Flyspeck is mainly concerned with R
3, we try to work in the

more general setting of R
N where possible.

The general theory has also been applied to the special case of R
2

and used in a further development of complex analysis.

2

Authorship and acknowledgements

As well as the present speaker, others have contributed substantially:

• Tom Hales and Flyspeck group: the further development and
application to the Flyspeck project, as well as many lemmas here
and much of the motivation.

• Lars Schewe: several results on affine dependence and convex
sets, Radon’s theorem.

• Marco Maggesi, Graziano Gentili and Gianni Ciolli: further
development of complex analysis including higher derivatives
and the first and second Cartan theorems.

• Valentina Bruno: Cauchy’s inequality, analytic continuation,
maximum modulus principle, open mapping theorem, Schwarz’s
lemma.

3

The problem with simple type theory

Can work over abstract spaces but then parametrization is heavy.

We would like each R
n to be a type in simple type theory.

For any fixed n we can use n-tuples, e.g. R × R for R
2.

For general n, using a set/predicate is OK, but then the type system
isn’t helping us much.

Yet we have no dependent types so we can’t have a type R
n depend

on a term n.

4

A parochial problem

Defining spaces such as R
n presents no problem for many

foundational systems.

• Untyped systems such as set theory (ACL2, B prover, Mizar, . . .)

• Richer dependent type theories (Coq, MetaPRL, PVS, . . .)

However, there are reasons to stick to simple type theory.

Several highly developed provers based on simple type theory
(HOL4, HOL Light, IMPS, Isabelle/HOL, . . .)

5

Our solution

For R
n use the function space τ → R where |τ | = n.

With some technical groundwork, this gives quite a nice solution:

• Operations can be defined generically with no parametrization

• Use polymorphic type variables in place of numeric parameters

• Use constructors like disjoint sum for ”arithmetic” on indices

• Theorems about R
2 etc. are really instances of results for R

α

Main downside: types are still not completely ‘first class’, so can’t
trivially do induction on dimension etc.

6

Gory details

Define a binary type constructor ‘ˆ ’.

Second argument is coerced to size 1 if infinite.

Indexing function ($):AˆN->num->A .

Components are x$1 , x$2 , x$3 etc.

Special notion of lambda-binding for componentwise expressions so
that (lambda i. t[i])$j = t[j] .

7

Basic definitions

|- x + y = lambda i. x$i + y$i

|- c % x = lambda i. c * x$i

|- vec n = lambda i. &n

For summations, looks similar to x · y =
∑

n

i=1
xiyi:

|- (x:realˆN) dot (y:realˆN) =

sum(1..dimindex(:N)) (λi. x$i * y$i)

8

Norms etc.

Define some of the usual vector notions:

|- norm x = sqrt(x dot x)

|- dist(x,y) = norm(x - y)

|- orthogonal x y ⇔ (x dot y = &0)

and linear functions:

|- linear (f:realˆM->realˆN) ⇔

(∀x y. f(x + y) = f(x) + f(y)) ∧

(∀c x. f(c % x) = c % f(x))

9

Matrices

Encode M × N matrices by (RN)M . Multiplication:

|- (A:realˆNˆM) ** (B:realˆPˆN) =

lambda i j. sum (1..dimindex(UNIV:N->bool))

(λk. Aik * Bkj)

Types give a natural way of enforcing dimensional compatibility in
matrix multiplication.

|- ∀A:realˆNˆM. linear(λx. A ** x)

|- ∀f:realˆM->realˆN.

linear f ⇒ ∀x. matrix f ** x = f(x)

|- ∀f g. linear f ∧ linear g

⇒ (matrix(g o f) = matrix g ** matrix f)

10

Topology

Induction over dimension in Heine-Borel and Brouwer are OK:

|- compact s ⇔

∀f:num->realˆN.

(∀n. f(n) IN s)

⇒ ∃l r. l IN s ∧ (∀m n. m < n ⇒ r(m) < r(n))

((f o r) --> l) sequentially

|- compact s ⇔ bounded s ∧ closed s

|- ∀ f:realˆN->realˆN.

compact s ∧ convex s ∧ ¬(s = {}) ∧

f continuous_on s ∧ IMAGE f s SUBSET s

⇒ ∃x. x IN s ∧ f x = x

11

Convex sets and polyhedra

Classic properties of convex sets such as Radon’s theorem

|- ∀c. affine_dependent c

⇒ ∃m p. m SUBSET c ∧ p SUBSET c ∧ DISJOINT m p

¬(DISJOINT (convex hull m) (convex hull p))

and results about polytopes and polyhedra, their faces etc.

|- polytope s <=> ∃v. FINITE v ∧ s = convex hull v

|- polyhedron s <=>

∃f. FINITE f ∧ s = INTERS f ∧

∀h. h IN f ⇒ ∃a b. ¬(a = vec 0) ∧

h = {x | a dot x <= b }

|- ∀s. polytope s <=> polyhedron s ∧ bounded s

12

Analysis

Usual Fréchet derivative:

|- (f has_derivative f’) (at x) ⇔

linear f’ ∧

((λy. inv(norm(y - x)) % (f(y) - (f(x) + f’(y - x))))

--> vec 0)

(at x)

and typical theorems:

|- (f has_derivative f’) (at x) ∧

(g has_derivative g’) (at (f x))

⇒ ((g o f) has_derivative (g’ o f’)) (at x)

13

Integration and measure

Kurzweil-Henstock gauge integral for functions R
M → R

N :

|- ∀f g h s.

(∀k. (f k) integrable_on s) ∧ h integrable_on s ∧

(∀k x. x IN s ⇒ norm(f k x) <= drop(h x)) ∧

(∀x. x IN s ⇒ ((λk. f k x) --> g x) sequentially)

⇒ g integrable_on s ∧

((λk. integral s (f k)) --> integral s g)

sequentially

and Lebesgue measure as integral of characteristic function:

|- ∀f:realˆN->realˆN.

linear f ∧ measurable s

⇒ (IMAGE f s) has_measure

(abs(det(matrix f)) * measure s)

14

Complex analysis (1)

Define complex derivatives and analytic functions, and relate it to
general differentiability in Euclidean space:

|- ∀f z. f complex_differentiable at z <=>

f differentiable at z ∧

(jacobian f (at z))$1$1 =

(jacobian f (at z))$2$2 ∧

(jacobian f (at z))$1$2 =

--((jacobian f (at z))$2$1)

Many other analytic theorems are proved.

15

Complex analysis (2)

More interesting theorems involve contour integrals, like Cauchy’s
integral formula:

|- ∀f s k g z.

convex s ∧ FINITE k ∧ f continuous_on s ∧

(∀x. x IN interior(s) DIFF k

⇒ f complex_differentiable at x) ∧

z IN interior(s) DIFF k ∧

valid_path g ∧

(path_image g) SUBSET (s DELETE z) ∧

pathfinish g = pathstart g

⇒ ((λw. f(w) / (w - z)) has_path_integral

(Cx(&2 * pi) * ii * winding_number(g,z) * f(z)))

g

16

Automated reasoning routines

As well as theorems, we have also developed a few convenient
automated proof tools:

• Simple routine for automatically proving universally quantified
vector formulas ‘componentwise’

• More sophisticated quantifier elimination for vectors, based on
an idea of Solovay.

• ‘Without loss of generality’ tactics for exploiting symmetries and
invariances, especially in geometry.

17

WLOG example

g ‘ ∀s a:realˆN.

closed s ∧ ¬(s = {})

⇒ ∃x. x IN s ∧

∀y. y IN s ⇒ dist(a,x) <= dist(a,y)‘;;

With a single application of our tactic, we can suppose the point in
question is the origin:

e(GEOM_ORIGIN_TAC ‘a:realˆN‘);;

val it : goalstack = 1 subgoal (1 total)

‘ ∀s. closed s ∧ ¬(s = {})

⇒ ∃x. x IN s ∧

∀y. y IN s ⇒ dist(vec 0,x) <= dist(vec 0,y)‘

18

Summary

• Simple but apparently effective representational trick

• Many definitions and theorems have a very natural formulation

• Some potential difficulties over induction on dimension etc.

• Has been developed into a substantial library with many classic
theorems

• Supplemented with some convenient proof tools

• Seems to provide a good foundation for Flyspeck work

• Also used for a significant development of complex analysis

19

