
Formal Theorem Proving and Sum-of-Squares
Techniques

John Harrison
Intel Corporation

LIDS Seminar, MIT

Fri 16th April 2010 (15:00-16:00)

0

Orientation

Can divide theorem proving research into the following streams:

• Fully automated theorem proving

– Human-oriented AI style approaches (Newell-Simon,
Gelerntner)

– Machine-oriented algorithmic approaches (Davis, Gilmore,
Wang, Prawitz)

• Interactive theorem proving

– Verification-oriented

– Mathematics-oriented

1

Theorem provers and computer algebra systems

Both systems for symbolic computation, but rather different:

• Theorem provers are more logically expressive/flexible and
rigorous

• CASs are generally easier to use and more efficient/powerful

Some systems like MathXpert, Theorema blur the distinction
somewhat . . .

2

Logical notation is very expressive

English Formal

false ⊥
true ⊤
not p ¬p

p and q p ∧ q

p or q p ∨ q

p implies q p ⇒ q

p iff q p ⇔ q

for all x, p ∀x. p

there exists x such that p ∃x. p

3

What can be automated?

• Validity/satisfiability in propositional logic is decidable (SAT).

• Validity/satisfiability in many temporal logics is decidable.

• Validity in first-order logic is semidecidable, i.e. there are
complete proof procedures that may run forever on invalid
formulas

• Validity in higher-order logic is not even semidecidable (or
anywhere in the arithmetical hierarchy).

4

Applications

SAT has many applications such as

• Digital logic verification using the correspondence between
circuits and formulas.

• Combinatorial problems such as scheduling.

Automated reasoning in first-order logic (even just equational logic)
has seen some successes too, e.g. solution by McCune of the
Robbins conjecture and other open problems.

5

The need for theories

But people usually use extensive background in set theory,
arithmetic, algebra or geometry when they deem something
‘obvious’.

For example, the Mutilated Checkerboard . . .

In practice, we need to reason about theories or higher-order
objects, which in general takes us well into the undecidable.

6

Some arithmetical theories

• Linear theory of N or Z is decidable. Nonlinear theory not even
semidecidable.

• Linear and nonlinear theory of R is decidable, though complexity
is very bad in the nonlinear case.

• Linear and nonlinear theory of C is decidable. Commonly used in
geometry.

Many of these naturally generalize known algorithms like
linear/integer programming and Sturm’s theorem.

7

Quantifier elimination

Many decision methods based on quantifier elimination, e.g.

• C |= (∃x. x2 + 1 = 0) ⇔ ⊤

• R |= (∃x.ax2+bx+c = 0) ⇔ a 6= 0∧b2 > 4ac∨a = 0∧(b 6= 0∨c = 0)

• Q |= (∀x. x < a ⇒ x < b) ⇔ a 6 b

• Z |= (∃k x y. ax = (5k + 2)y + 1) ⇔ ¬(a = 0)

If we can decide variable-free formulas, quantifier elimination implies
completeness.

Again generalizes known results like closure of constructible sets
under projection.

8

Interactive theorem proving

The idea of a more ‘interactive’ approach was already anticipated by
pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps machines may more
quickly become of practical use in mathematical research,
not by proving new theorems, but by formalizing and
checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous that Principia [Mathematica],
from technical papers to textbooks, or from abstracts to
technical papers.

However, constructing an effective combination is not so easy.

9

The 17 Provers of the World

Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
describes:

HOL, Mizar, PVS, Coq, Otter/IVY, Isabelle/Isar, Alfa/Agda, ACL2,
PhoX, IMPS, Metamath, Theorema, Lego, Nuprl, Omega, B prover,
Minlog.

Each one has a proof that
√

2 is irrational.

There are many other systems besides these . . .

10

Effective interactive theorem proving

What makes a good interactive theorem prover? Most agree on:

• Reliability

• Library of existing results

• Intuitive input format

• Powerful automated steps

Several other characteristics are more controversial:

• Programmability

• Checkability of proofs

11

LCF

One successful solution was pioneered in Edinburgh LCF (‘Logic of
Computable Functions’).

The same ‘LCF approach’ has been used for many other theorem
provers.

• Implement in a strongly-typed functional programming language
(usually a variant of ML)

• Make thm (‘theorem’) an abstract data type with only simple
primitive inference rules

• Make the implementation language available for arbitrary
extensions.

Gives a good combination of extensibility and reliability.

Now used in Coq, HOL, Isabelle and several other systems.

12

Benefits and costs

Working in an interactive theorem prover offers two main benefits:

• Confidence in correctness (if theorem prover is sound).

• Automatic assistance with tedious/routine parts of proof.

However, formalization and theorem proving is hard work, even for a
specialist.

13

Current niches

We currently see use of theorem proving where:

• The cost of error is too high, e.g. $475M for the floating-point
bug in the IntelPentium processor.

• A mathematical proof presents difficulties for the traditional peer
review process, e.g. Hales’s proof of the Kepler Conjecture.

Signs that theorem proving is starting to expand beyond these
niches.

14

HOL Light overview

HOL Light is a member of the HOL family of provers, descended
from Mike Gordon’s original HOL system developed in the 80s.

An LCF-style proof checker for classical higher-order logic built on
top of (polymorphic) simply-typed λ-calculus.

HOL Light is designed to have a simple and clean logical foundation.

Written in Objective CAML (OCaml).

15

The HOL family DAG

HOL88

�
�

�
�

�	
hol90

@
@

@
@

@R
ProofPower

HHHHHHHHHj
Isabelle/HOL

?
HOL Light

?
hol98

@
@

@@R

�
�

�
�

�	

?
HOL 4

16

HOL Light primitive rules (1)

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u
Γ ∪ ∆ ⊢ s = u

TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪ ∆ ⊢ s(u) = t(v)
MK COMB

Γ ⊢ s = t

Γ ⊢ (λx. s) = (λx. t)
ABS

⊢ (λx. t)x = t
BETA

17

HOL Light primitive rules (2)

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪ ∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ − {q}) ∪ (∆ − {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ[x1, . . . , xn] ⊢ p[x1, . . . , xn]

Γ[t1, . . . , tn] ⊢ p[t1, . . . , tn]
INST

Γ[α1, . . . , αn] ⊢ p[α1, . . . , αn]

Γ[γ1, . . . , γn] ⊢ p[γ1, . . . , γn]
INST TYPE

18

Simple equality reasoning

We can create various simple derived rules in the usual LCF fashion,
such as a one-sided congruence rule:

let AP_TERM tm th =

try MK_COMB(REFL tm,th)

with Failure _ -> failwith "AP_TERM";;

and a symmetry rule to reverse equations:

let SYM th =

let tm = concl th in

let l,r = dest_eq tm in

let lth = REFL l in

EQ_MP (MK_COMB(AP_TERM (rator (rator tm)) th,lth)) lth;;

19

Logical connectives

Even the logical connectives themselves are defined:

⊤ = (λx. x) = (λx. x)

∧ = λp. λq. (λf. f p q) = (λf. f ⊤ ⊤)

⇒= λp. λq. p ∧ q = p

∀ = λP. P = λx. ⊤
∃ = λP. ∀Q. (∀x. P (x) ⇒ Q) ⇒ Q

∨ = λp. λq. ∀r. (p ⇒ r) ⇒ (q ⇒ r) ⇒ r

⊥ = ∀P. P

¬ = λt. t ⇒ ⊥
∃! = λP. ∃P ∧ ∀x. ∀y. P x ∧ P y ⇒ (x = y)

20

Building up derived rules

We proceed to get the full HOL Light system by setting up:

• More and more sophisticated derived inference rules, based on
earlier ones.

• New types for mathematical structures, defined in terms of
earlier structures.

Thus, the whole system is built in a ‘correct by construction’ way and
all proofs ultimately reduce to primitives. An early step in the journey
is conjunction introduction

Γ ⊢ p ∆ ⊢ q

Γ ∪ ∆ ⊢ p ∧ q
CONJ

21

Definition of CONJ

. . . which is defined as:

let CONJ =

let f = ‘f:bool->bool->bool‘

and p = ‘p:bool‘ and q = ‘q:bool‘ in

let pth =

let pth = ASSUME p and qth = ASSUME q in

let th1 = MK_COMB(AP_TERM f (EQT_INTRO pth),EQT_INTRO qth)

let th2 = ABS f th1 in

let th3 = BETA_RULE (AP_THM (AP_THM AND_DEF p) q) in

EQ_MP (SYM th3) th2 in

fun th1 th2 ->

let th = INST [concl th1,p; concl th2,q] pth in

PROVE_HYP th2 (PROVE_HYP th1 th);;

22

Some of HOL Light’s derived rules

• Simplifier for (conditional, contextual) rewriting.

• Tactic mechanism for mixed forward and backward proofs.

• Tautology checker.

• Automated theorem provers for pure logic, based on tableaux
and model elimination.

• Linear arithmetic decision procedures over R, Z and N.

• Differentiator for real functions.

• Generic normalizers for rings and fields

• General quantifier elimination over C

• Gröbner basis algorithm over fields

23

A higher-level derived rule

The derived rule REAL ARITH can prove facts of linear arithmetic
automatically.

REAL_ARITH

‘a <= x /\ b <= y /\

abs(x - y) < abs(x - a) /\

abs(x - y) < abs(x - b) /\

(b <= x ==> abs(x - a) <= abs(x - b)) /\

(a <= y ==> abs(y - b) <= abs(y - a))

==> (a = b)‘;;

But under the surface, everything is happening by primitive inference
(about 50000 such inferences).

24

What about the nonlinear theory of reals?

The first-order theory of reals is decidable by quantifier elimination:

• 1930: Tarski discovers quantifier elimination procedure for this
theory

• 1948: Tarski’s algorithm published by RAND

• 1954: Seidenberg publishes simpler algorithm

• 1975: Collins develops and implements cylindrical algebraic
decomposition (CAD) algorithm

• 1983: Hörmander publishes very simple algorithm based on
ideas by Cohen.

• 1990: Vorobjov improves complexity bound to doubly exponential
in number of quantifier alternations.

25

Why is it so little used?

This is an exciting result:

• Illuminates the structure of constructible sets in algebraic
geometry

• Gives algorithmic solution for non-trivial questions (e.g. kissing
problems in higher dimensions).

Yet there is very little practical use for these methods:

• Theoretical performance is very bad (doubly exponential)

• This is reflected in practical infeasibility even on relatively simple
problems.

• Implementation of the best algorithms is complicated, even more
if they have to be reliable/certifiable.

26

The universal fragment

Consider the case of proving purely universally quantified formulas
(‘for all x, y, . . . ’, never ‘there exists z’).

• In principle this seems very restrictive, but it takes in many
problems of practical interest.

• Fits naturally with combination methods for ‘quantifier-free’
decision procedures (satisfiability modulo theories, SMT).

• Permits radically different approaches that can be much more
efficient, and a lot easier to certify.

We consider the technique pioneered by Parrilo using sums of
squares (SOS).

27

Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) > 0

28

Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) > 0

For a simple example:

x2 − 2x + 1 > 0

29

Proving nonnegativity of polynomials

We want to prove a polynomial is positive semidefinite (PSD):

∀x. p(x) > 0

For a simple example:

x2 − 2x + 1 = (x − 1)2 > 0

it’s a perfect square.

30

A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 > 0

31

A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 > 0

32

A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 > 0

23x2 + 6xy + 3y2 − 20x + 5 = 1

23
(23x + 3y − 10)2 + 15

23
(2y + 1)2 > 0

33

A more complicated example

23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 > 0

23x2 + 6xy + 3y2 − 20x + 5 = 1

23
(23x + 3y − 10)2 + 15

23
(2y + 1)2 > 0

We have found sum of squares (SOS) decompositions, which suffice
to prove nonnegativity.

34

From Zeng et al, JSC vol 37, 2004, p83-99

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 > 0

35

From Zeng et al, JSC vol 37, 2004, p83-99

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+

3x2 + w2 + 2zw + z2 + 2z + 2w + 1 =

(y2)2 + (x2 + w + z + 1)2 + x2 + (w3 + z2)2 > 0

36

Value of SOS techniques

An attractive method providing a very simple certificate for a theorem
prover (or person) to verify. But

• Polynomial nonnegativity is a rather special problem, and even
then, SOS decomposition may not exist even if the polynomial is
PSD

• Not easy to find the SOS decomposition even if it does exist

The solutions to these problems?

• Seek more general ‘Positivstellensatz’ certificates involving SOS,
not just simple SOS decompositions

• Find the Psatz certificates using semidefinite programming.

37

The usual Nullstellensatz

Over algebraically closed fields like C we have a nice simple
equivalence.

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · · + qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership and
solve it efficiently using Gröbner bases.

38

The real Nullstellensatz

In the analogous Nullstellensatz result over R, sums of squares play
a central role:

The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real closed
closed field have no common solution iff there are polynomials q1(x),
. . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · · + qk(x) · pk(x) + s1(x)2 + · · · + sm(x)2 = −1

39

The real Positivstellensatz

There are still more general “Positivstellensatz” results about the
inconsistency of a set of equations, negated equations, strict and
non-strict inequalities.

Can use this to prove any universally quantified formula in the
first-order language of reals, e.g. prove

∀a b c x. ax2 + bx + c = 0 ⇒ b2 − 4ac > 0

via the following SOS certificate:

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

40

Reduction to semidefinite programming

Can reduce finding SOS decompositions, and PSatz certificates of
bounded degree, to semidefinite programming (SDP).

SDP is basically optimizing a linear function of parameters while
making a matrix linearly parametrized by those parameters PSD.

Can be considered a generalization of linear programming, and
similarly is solvable in polynomial time using interior-point algorithms.

There are many efficient tools to solve the problem effectively in
practice. I mostly use CSDP.

41

Experience and problems

This approach is often much more efficient than competing
techniques such as general quantifier elimination.

Lends itself very well to a separation of proof search and LCF-style
checking, so fits very well with HOL Light.

Still some awkward numerical problems where the PSD is tight (can
become zero) and the rounding to rationals causes loss of
PSD-ness.

Available with HOL Light since 2.0 in Examples/sos.ml, and
seems quite useful. (Includes over-engineered and under-optimized
SOS_CONV.)

Coq port by Laurent Théry.

42

The univariate case

Alternative based on the simple observation that every nonnegative
univariate polynomial is a sum of squares of real polynomials.

All roots, real or complex, must occur in conjugate pairs. Thus the
polynomial is a product of factors

(x − [ak + ibk])(x − [ak − ibk])

and so is of the form

(q(x) + ir(x))(q(x) − ir(x)) = q(x)2 + r(x)2

To get an exact rational decomposition, we need a more intricate
algorithm, but this is the basic idea.

43

Experience of univariate case

Numerical problems can be particularly annoying with some
polynomial bound problems in real applications where the
coefficients are non-trivial (60-200 bits).

For example, proving ∀x. |x| 6 k ⇒ |f(x) − p(x)| < ǫ where p is a
short approximation to a longer polynomial f .

The direct approach is often better than SDP-based methods, for
numerical reasons, in such examples.

44

Conclusion

Current interactive theorem provers are becoming quite capable and
getting applied in formal verification and pure mathematics.

There is currently a ‘gap’ in such systems for nonlinear reasoning
over the reals, which despite its theoretical decidability is difficult in
practice.

The SOS approach using SDP to find certificates is often more
efficient than traditional quantifier elimination, and much better suited
to formal certification.

Still some numerical problems; not clear to what extent these would
be solved by a high-precision SDP solver.

45

Shameless book plug

An introductory survey of many central results in automated
reasoning, together with actual code.

46

