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What is the prime number theorem?

Let π(x) be the number of primes ≤ x.

The Prime Number Theorem asserts that

π(x) ∼
x

log(x)

or in other words π(x)
x/ log(x) → 1 as x → ∞.

See G. J. O. Jameson The Prime Number Theorem, LMS Student
Texts 53, Cambridge University Press 2003.

The convergence is slow, and
∫ x

2
log(t)dt is a better approximation,

but the ratio does tend to 1.
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Small values

x π(x) x

log(x) Ratio

102 25 21.71 1.1515

103 168 144.76 1.1605

104 1229 1085.74 1.1319

105 9592 8685.89 1.1043

106 78498 72382.41 1.0845

107 664579 620420.69 1.0712

108 5761455 5428681.02 1.0613

109 50847534 48254942.43 1.0537

1010 455052511 434294481.90 1.0478

1011 4118054813 3948131653.67 1.0430

1012 37607912018 36191206825.27 1.0391

1013 346065536839 334072678387.12 1.0359

1014 3204941750802 3102103442166.08 1.0331

1015 29844570422669 28952965460216.79 1.0308

1016 279238341033925 271434051189532.38 1.0288

1017 2623557157654233 2554673422960304.87 1.0270
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History of the Prime Number Theorem

ca. 1800 Conjectured by several mathematicians including Gauss, but no
real progress towards a proof

1847 Chebyshev proves π(x)
x/ log(x) is bounded quite close to 1, and that

if it tends to a limit, that limit is 1

1859 Riemann points out deep relationship between distribution of
primes and the complex zeta function ζ(s)

1896 PNT proved independently by Hadamard and de la Valée
Poussin using nonvanishing of ζ(s) for ℜs ≥ 1 and complex
contour integration

1949 Elementary proof by Erdös and Selberg, using very intricate
manipulations but not relying on any complex analysis

1980 More streamlined version of complex-analytic proof by Newman
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Formalizing the PNT

The elementary Erdös-Selberg proof has already been formalized by
a team led by Jeremy Avigad.

Jeremy Avigad, Kevin Donnelly, David Gray, Paul Raff
A formally verified proof of the prime number theorem
ACM Transactions on Computational Logic, vol. 9, 2007

We describe the formalization of Newman’s relatively slick analytic
proof.

The analytic proof is simpler and clearer, but at the cost of requiring
much more mathematical machinery.

Analytic functions, contour integrals, Cauchy’s integral formula, the
Riemann ζ-function, Euler’s product formula, . . .
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The Solovay challenge

From Freek Wiedijk’s The Seventeen Provers of the World, Springer
LNCS vol. 3600, 2006, p. 12:

Bob Solovay has challenged the proof assistant community
to do a formalization of the analytic proof of the Prime
Number Theorem. (He claims that proof assistant
technology will not be up to this challenge for decades.)
This challenge is still open, as the proof of the Prime
Number Theorem that Jeremy Avigad formalized was the
‘elementary’ proof by Atle Selberg.
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The Solovay challenge

From Freek Wiedijk’s The Seventeen Provers of the World, Springer
LNCS vol. 3600, 2006, p. 12:

Bob Solovay has challenged the proof assistant community
to do a formalization of the analytic proof of the Prime
Number Theorem. (He claims that proof assistant
technology will not be up to this challenge for decades.a)
This challenge is still open, as the proof of the Prime
Number Theorem that Jeremy Avigad formalized was the
‘elementary’ proof by Atle Selberg.

aOthers who are more optimistic about this asked me to add this footnote in which I encour-

age the formalization community to prove Bob Solovay wrong.
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Mathematical machinery vs. brute force (1)

In many cases, the way a human and a machine prove a theorem
are very different.

Simply put, differences abound between the way a person
reasons and the way a program of the type featured here
reasons. Those differences may in part explain why OTTER
has succeeded in answering questions that were
unanswered for decades, and also explain why its use has
produced proofs far more elegant than those previously
known. [Larry Wos]

And indeed, in McCune’s solution of the Robbins conjecture, the
theorem prover actually does better than the human.
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Mathematical machinery vs. brute force (2)

There has been some work on formalizing elliptic curves in theorem
provers

Laurent Théry and Guillaume Hanrot, Primality Proving with
Elliptic Curves, TPHOLs 2007

Joe Hurd, Formally Verified Elliptic Curve Cryptography,
presentation from 2007.

In both cases, associativity of addition led to huge algebraic
computations that taxed or even defeated the capacity of the
theorem provers’ algebraic decision procedures.
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Mathematical machinery vs. brute force (3)

From Dan Grayson:

But why not enter one of the usual human-understandable
proofs that + is associative? Too many prerequisites from
algebraic geometry? [. . . ] The proof I like most is to use the
Riemann-Roch theorem to set up a bijection between the
rational points of an elliptic curve and the elements of the
group of isomorphism classes of invertible sheaves of
degree 0. That’s a lot of background theory, probably too
much for this stage of development, but then the “real”
reason for associativity is that tensor product of R-modules
is an associative operation up to isomorphism.

Wouldn’t it be nicer to formalize that instead?
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HOL as a general mathematical framework

As well as HOL itself, Mike Gordon pioneered the use of the theorem
prover as a universal framework to replace ad hoc extensions.

• Programming logics: define the underlying semantics of a
programming language inside HOL and derive the usual
programming rules. (Deep and shallow embeddings, . . . )

• Theory development: construct mathematical structures like
natural numbers, lists, datatypes etc. instead of adding new
axioms. (The advantages of honest toil over theft.)

For applications in floating-point arithmetic, nice to bring all these
together with a construction of the reals.
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Foundations for this work

Our development of ‘mathematical machinery’ leading up to
Cauchy’s integral formula:

• Constructing the Real Numbers in HOL, TPHOLs 1992

• Complex quantifier elimination in HOL, TPHOLs 2001 (Category
B)

• A HOL theory of Euclidean space, TPHOLs 2005

• Formalizing Basic Complex Analysis, Festschrift for Andrzej
Trybulec, 2007
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Source text

‘Second proof’ from Analytic Number Theory by Newman himself
(Springer, 1998). Can be divided into five components:

1. The Newman-Ingham “Tauberian” analytical lemma.

2. Basic properties of the Riemann ζ-function and its derivative,
including the Euler product.

3. Chebyshev’s elementary proof that
∑

p≤n
log p

p − log n is
bounded.

4. Application of analytic lemma to get summability of
∑

n(
∑

p≤n
log p

p − log n − c)/n for some constant c.

5. From summability, deduce
∑

p≤n
log p

p − log n tends to a limit.

6. Derivation of the PNT from that limit using partial summation.
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The de Bruijn factor

An interesting way of measuring the difficulty of a formalization is the
de Bruijn factor.

http://www.cs.ru.nl/ ∼freek/factor/

I defined the de Bruijn factor to be the quotient of the size of
a formalization of a mathematical text and the size of its
informal original. To make this specific, I made the following
choices:

• The size of the informal text is the size of a TeX encoding.

• To be independent of arbitrary factors like lengths of
identifiers and amount of whitespace, the files should be
compared compressed with the Unix utility gzip.

Experience shows that the dB factor in many cases is around 4.
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De Bruijn factors

De Bruijn factors for various parts of this PNT proof:

Part of proof dB factor

1 Analytical lemma 8.2

2 ζ-function 81.3

3 Chebyshev bound 28.2

4 Summability 11.0

5 Limit 5.4

6 PNT 30.4

By normal standards these range from high-ish to outrageously high.
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Newman’s inexplicit style

However, some of the parts in Newman are not really ‘proofs’:

2 Let us begin with the well-known fact about the ζ-function:
(z − 1)ζ(z) is analytic and zero free throughout ℜz ≥ 1.

3 In this section we begin with Tchebyshev’s observation that
∑

p≤n
log p

p − log n is bounded, which he derived in a direct
elementary way from the prime factorization on n!

6 The point is that the Prime Number Theorem is easily derived
from ‘

∑

p≤n
log p

p − log n converges to a limit’ by a simple
summation by parts which we leave to the reader.

For parts 1, 4 and 5, the de Bruijn factor is ‘only’ about 8.

Moreover, part 2 vs. actual source (Bak & Newman) has a dB factor
of only 3.1.

15



Why the dB factor is large (1)

The following short passage:

• determine δ = δ(R) > 0, δ ≤ 1
2 and an M = M(R) so that

F (z + w) is analytic and bounded by M in −δ ≤ ℜz, |z| ≤ R.

takes 164 lines to formalize:

SUBGOAL_THEN

‘?d. &0 < d /\ d <= R /\

(\z. f(w + z)) holomorphic_on {z | Re(z) >= --d /\ abs(Im z) <= R }‘

...

SUBGOAL_THEN

‘?M. &0 < M /\

!z. Re z >= --d /\ abs (Im z) <= R /\ Re(z) <= R

==> norm(f(w + z):complex) <= M‘

...
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Why the dB factor is large (2)

The second equation here:

• f(z) =
∑∞

n=1
1

nz

(

∑

p≤n
log p

p

)

=
∑

p
log p

p

[

∑

n≥p
1

nz

]

takes 116 lines to formalize:

let lemma = prove

(‘vsum (1..n) (\m. vsum {p | prime p /\ p <= m} (\p. f p m)) =

vsum {p | prime p /\ p <= n} (\p. vsum (p..n) (\m. f p m))‘,

SIMP_TAC[VSUM_VSUM_PRODUCT; FINITE_NUMSEG; FINITE_ATMOST] THEN

REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG; GSYM CONJ_ASSOC] THEN

MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN

...

MATCH_MP_TAC LOG_MONO_LE_IMP THEN

ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_OF_NUM_LT;LT_NZ] THEN

REAL_ARITH_TAC]);;
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The analytic lemma

The heart of Newman’s proof is the following analytic lemma.

Theorem. Suppose |an| ≤ 1, and form the series
∑

ann−z which

clearly converges to an analytic function F (z) for ℜz > 1. If, in

fact, F (z) is analytic throughout ℜz ≥ 1, then
∑

ann−z

converges throughout ℜz ≥ 1.

This is where the analytical machinery comes in, and its dB factor
seems representative of the proof as a whole.
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The contour

19



The key contour integral

2πiF (w) =

∫

Γ

F (z + w)Nz

(

1

z
+

z

R2

)

dz

This is the application of Cauchy’s integral formula

2πiWN(Γ, z)f(z) =

∫

Γ

f(w)

w − z

where the winding number is defined by:

WN(Γ, z) =
1

2πi

∫

Γ

1

w − z
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HOL version of Cauchy’s integral formula

We have Cauchy’s integral for a region with a convex shape:

|- convex s /\ f holomorphic_on s /\

z IN interior(s) /\

valid_path g /\ (path_image g) SUBSET (s DELETE z) /\

pathfinish g = pathstart g

==> ((\w. f(w) / (w - z)) has_path_integral

(Cx(&2) * Cx(pi) * ii * winding_number(g,z) *
f(z))) g

where the winding number is defined as:

|- winding_number(g,z) =

Cx(&1) / (Cx(&2) * Cx(pi) * ii) *
path_integral g (\w. Cx(&1) / (w - z))
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Applying the integral formula

The only problem in applying the integral formula is proving that the
winding number of our contour is 1

• Could do the integral, which is possible but messy and too
‘special’

• Could appeal to the fact that a closed curve has WN in the set
{−1, 0, +1} and exclude the first two

• Can piece together WN for two parts of the contour knowing
they’re strictly between 0 and 1.

Yet in the informal proof, this is just obvious from the intuitive
meaning of WN.
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Results about winding numbers (1)

We deal with winding numbers of paths that are not closed; they are
additive when we join two paths:

|- valid_path g1 /\ valid_path g2 /\

˜(z IN path_image g1) /\ ˜(z IN path_image g2)

==> winding_number(g1 ++ g2,z) =

winding_number(g1,z) + winding_number(g2,z)

The WN is an integer if and only if the path is closed:

|- valid_path g /\ ˜(z IN path_image g)

==> (complex_integer(winding_number(g,z)) <=>

pathfinish g = pathstart g)
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Results about winding numbers (2)

We can package this up conveniently to deduce several key
properties from components using additivity:

|- (valid_path g1 /\

˜(z IN path_image g1) /\

&0 < Re(winding_number(g1,z))) /\

(valid_path g2 /\

˜(z IN path_image g2) /\

&0 < Re(winding_number(g2,z))) /\

pathfinish g1 = pathstart g2

==> valid_path(g1 ++ g2) /\

˜(z IN path_image(g1 ++ g2)) /\

&0 < Re(winding_number(g1 ++ g2,z))
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Results about winding numbers (3)

We can prove the WN for each component is positive very easily, e.g.
for line segments:

|- &0 < Im((b - a) * cnj(b - z))

==> &0 < Re(winding_number(linepath(a,b),z))

and prove that WN for a component is < 1 by showing that there’s
some ray it doesn’t cross:

|- valid_path g /\ ˜(z IN path_image g) /\ ˜(w = z) /\

(!a. &0 < a

==> ˜(z + (Cx a * (w - z)) IN path_image g))

==> Re(winding_number(g,z)) < &1

Hence we can deduce that the WN for our contour is 1, as required.
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The end result

The Prime Number Theorem formalized:

|- ((\n. &(CARD {p | prime p /\ p <= n}) /

(&n / log(&n)))

---> &1) sequentially
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Conclusion

We really are able to formalize a proof that needs a bit of
mathematical machinery.

The analytic proof, even though not trivial, still seems less work than
the Erdös-Selberg proof.

If we add all the work taken in developing the theory of analytic
functions, it’s almost certainly more.

However that is independently interesting and useful for other
applications too.
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