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Summary of talk

I Motivation: the need for dependable proof

I Intel verification work
I The Flyspeck project

I Combining tools and certifying results

I The diversity of useful tools
I Certificates for common cases
I Examples

I Beyond standard geometric decision procedures:

I Without loss of generality
I Decision procedures for vector spaces
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Motivation: dependable proof

We are interested in machine-checked and machine generated
formal proof

I Not just a ‘yes’ or ‘no’ from a complex decision procedure

I A real step-by-step proof using basic rules of formal logic

Why?

I High reliability

I Independent checkability

How?

I LCF theorem prover architecture à la Milner
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Motivation for dependable proof 1: the FDIV bug

One of the most serious problems that Intel has ever encountered:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

A very powerful motivation for performing rigorous proofs of
numerical algorithms!
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Formal verification

Formal verification: mathematically prove the correctness of a
design with respect to a mathematical formal specification, using
machine-checked proof.

Actual system

Design model

Formal specification

Actual requirements
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Models versus the real world

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.
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Motivation for dependable proof 2: the Kepler conjecture

I States that no arrangement of identical balls in ordinary
3-dimensional space has a higher packing density than the
obvious ‘cannonball’ arrangement.

I Hales, working with Ferguson, arrived at a proof in 1998,
consisting of 300 pages of mathematics plus 40,000 lines of
supporting computer code: graph enumeration, nonlinear
optimization and linear programming.

I Hales submitted his proof to Annals of Mathematics . . .
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The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the
problem. This is not what I had hoped for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”
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The birth of Flyspeck

I Hales’s proof was eventually published, and no significant
error has been found in it. Nevertheless, the verdict is
disappointingly lacking in clarity and finality.

I As a result of this experience, the journal changed its editorial
policy on computer proof so that it will no longer even try to
check the correctness of computer code.

I Dissatisfied with this state of affairs, Hales initiated a project
called Flyspeck to completely formalize the proof.

I “Flyspeck” = “Formal proof of the Kepler Conjecture”
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1: Combining tools and
certifying results
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Diversity at Intel

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

I Microcode

I Firmware

I Protocols

I Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.
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A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

I Propositional tautology/equivalence checking (FEV)

I Symbolic simulation

I Symbolic trajectory evaluation (STE)

I Temporal logic model checking

I Combined decision procedures (SMT)

I First order automated theorem proving

I Interactive theorem proving

Integrating all these is a challenge!
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Flyspeck: a diversity of methods

The Flyspeck proof combines large amounts of pure mathematics,
optimization programs and special-purpose programs:

I Standard mathematics including Euclidean geometry and
measure theory

I More specialized theoretical results on hypermaps, fans and
packing.

I Enumeration procedure for ‘tame’ graphs

I Large number of linear programming problems.

I Many complicated nonlinear programming problems.
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Sharing results or sharing proofs?

A key dichotomy is whether we want to simply:

I Transfer results, effectively assuming the soundness of tools

I Transfer proofs or other ‘certificates’ and actually check them
in a systematic way.

The first is general speaking easier and still useful. The latter gives
better assurance and is our main interest here.
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Interfaces between interactive provers

Transferring results:

I hol90 → Nuprl: Howe and Felty 1997

I ACL2 → HOL4: Gordon, Hunt, Kaufmann & Reynolds 2006

Transferring proofs:

I HOL4 → Isabelle/HOL: Skalberg 2006

I HOL Light → Isabelle/HOL: Obua 2006

I Isabelle/HOL → HOL Light: McLaughlin 2006

I HOL Light → Coq: Keller 2009

More comprehensive solutions for exchange between HOL-like
provers include work by Hurd et al. (OpenTheory) and Adams
(importing into HOL Zero).
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Certificates

We really want the various tools to be able to produce some kind
of certificate that can be relatively easily checked in the prover.

I We don’t need to bring all the complicated and possibly
buggy code in the various external tools into our formal world
— we just check their work afterwards!

I Example: suppose we want to prove formally that 232 + 1 is
not prime.

I Factorize it using external tools, giving the certificate (in this
case just the answer) 232 + 1 = 641× 6700417

I Factoring large numbers uses highly complex algorithms and
optimized code, but to check the answer we just need to do
simple integer arithmetic.
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Proving primality

What about the dual problem of proving that a large number is
prime? It’s not so obvious how to certify this.

I There are suitable certificates that p is prime, based on a
factorization of p − 1, using Lucas’s theorem from number
theory.

I Pratt, “Every prime has a succinct certificate”, SIAM J.
Computing 1975. This was the first proof that primality is NP
(we now know it’s in P).

I A somewhat more efficient refinement using Pocklington’s
theorem was implemented in Coq by Caprotti and Oostdijk,
“Formal and efficient primality proofs by computer algebra
oracles”
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Pocklington’s thoerem

In HOL Light, we also generate a ‘certificate of primality’ based on
Pocklington’s theorem:

2 ≤ n ∧
(n - 1 = q * r) ∧
n ≤ q EXP 2 ∧
(a EXP (n - 1) == 1) (mod n) ∧
(∀p. prime(p) ∧ p divides q ⇒ coprime(a EXP ((n - 1) DIV p) - 1,n))

⇒ prime(n)

The certificate is generated ‘extra-logically’, using the
factorizations produced by PARI/GP.
The certificate is then checked by formal proof, using the above
theorem.

19



Pure logic: SAT

SAT is particularly important nowadays given the power of modern
SAT solvers and the fact that they get used as components in
other systems (QBF solvers, bounded model checkers, . . . )
For satisfiable problems it’s generally easy to get a satisfying
valuation out of a SAT solver and check it relatively efficiently.
For unsatisfiable problems, some SAT checkers are capable of
emitting a resolution proof, and this can be checked.

Weber and Amjad, Efficiently Checking Propositional
Refutations in HOL Theorem Provers

This is feasible, though depending on the problem it can still take
rather more time to check the solution than the SAT solver took to
find it. Usually not too much longer, though.
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Pure logic: FOL

In principle, relatively easy: often much faster to check a proof
even in a slow prover than to perform the extensive search that led
to it.
Even ‘internal’ automated provers like MESON in HOL Light and
blast in Isabelle have long used a separate search phase.
Main difficulties of interfacing to mainstream ATP systems are:

I Getting a sufficiently explicit proof out of certain provers in
the first place. For example, Vampire is generally more
powerful than prover9, but it’s much easier to get proofs from
the latter.

I When formulating a problem in a higher-order polymorphically
typed setting, making a suitable reduction to the
monomorphic first-order logic supported by most ATPs.

21



Arithmetical theories: linear arithmetic

Generally works quite well for universal formulas over R or Q.
The key is Farkas’s Lemma, which implies that for any
unsatisfiable set of inequalities, there’s a linear combination of
them that’s ‘obviously false’ like 1 < 0.
Alexey Solovyev’s highly optimized implementation of this is
essential for Flyspeck.
More challenging if we have (i) quantifier alternations, or (ii)
non-trivial use of a discrete structures like Z or N. (Simple tricks
like x < y → x + 1 ≤ y go some way.)
For example, there are implementations of Cooper’s algorithm
inside theorem provers, but none that can efficiently check traces
from any external tool.
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Arithmetical theories: algebraically closed fields

Again, the universal theory is easiest, and this coincides with the
universal theory of fields or integral domains (when the
characteristic is fixed).
Using the Rabinowitsch trick p 6= 0 → ∃y . py − 1 = 0, we just
need to refute a conjunction of equations. Then we can appeal to
the Hilbert Nullstellensatz:
The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in an
algebraically closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x) such that the following polynomial
identity holds:

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) = 1

Thus we can reduce equation-solving to ideal membership.
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Arithmetical theories: ideal membership

One can solve ideal membership problems using various methods,
e.g. linear algebra. But the most standard method is Gröbner
bases, which are implemented by many computer algebra systems.
Given polynomials p1(x), . . . , pk(x) and r(x), these can return
explicit cofactor polynomials qk(x) when they exist such that

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) = r(x)

However, in contrast to Farkas’s Lemma, the cofactors are not
just numbers and can be huge expressions.
Often more efficient to use HOL Light’s simple internal
implementation of Gröbner bases than appeal to external tools.
However, can return the cofactors in more efficient forms using
shared subterms.
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Arithmetical theories: universal theory of reals (1)

There is an analogous way of certifying universal formulas over R
using the Real Nullstellensatz, which involves sums of squares
(SOS):
The polynomial equations p1(x) = 0, . . . , pk(x) = 0 in a real
closed closed field have no common solution iff there are
polynomials q1(x), . . . , qk(x), s1(x), . . . , sm(x) such that

q1(x) · p1(x) + · · ·+ qk(x) · pk(x) + s1(x)2 + · · ·+ sm(x)2 = −1

The similar but more intricate Positivstellensatz generalizes this to
inequalities of all kinds.
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Arithmetical theories: universal theory of reals (2)

The appropriate certificates can be found in practice via
semidefinite programming (SDP). For example
23x2 + 6xy + 3y2 − 20x + 5 = 5 · (2x − 1)2 + 3 · (x + y)2 ≥ 0 or

∀a b c x . ax2 + bx + c = 0⇒ b2 − 4ac ≥ 0

because

b2 − 4ac = (2ax + b)2 − 4a(ax2 + bx + c)

However, most standard nonlinear solvers do not return such
certificates, and this approach does not obviously generalize to
formulas with richer quantifier structure.
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Other examples

There has been some research on at least the following:

I SMT: seems feasible to combine and generalize methods for
SAT and theories.

I Explicit-state or BDD-based symbolic model checking: seems
hard to separately certify and emulation is slow.

I Computer algebra: some easy case like indefinite integrals.
Others like definite integrals are much harder.

Major research challenge: which algorithms lend themselves to this
kind of efficient checking? Which ones seem essentially not to?
Some analogies with the class NP.
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Results on reciprocal algorithm
We use prime factor certification to derive critical values that need
to be checked for the correctness of a reciprocal algorithm:
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Results on Flyspeck

Some simple Flyspeck inequalities, after being expressed
componentwise, can be proved efficiently by SOS certification, e.g.
this one in HOL Light syntax:

!u v w:real^3.dist(u,v) >= &2 /\

dist(u,w) >= &2 /\

dist(v,w) >= &2 /\

norm(u - v) < sqrt(&8)

==> norm(w - &1 / &2 % (u + v))

> norm(u - v) / &2

However, some of the more complex ones seem to be out of reach
of current SOS implementations.
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2: Beyond standard geometric
decision procedures
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Beyond existing decision procedures

Many geometric problems can be solved efficiently using
coordinate reduction and automated algorithms, e.g.

I Wu’s algorithm or Gröbner bases for problems over
algebraically closed fields.

I Nonlinear real decision procedures for real-specific cases, e.g.
involving inequalities.

However, these are not always efficient when applied in a
straightforward manner, especially with the extra problem of
generating a complete formal proof.
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Without loss of generality

I Mathematical proofs sometimes state that a certain
assumption can be made ‘without loss of generality’ (WLOG).

I Claims that proving the result in a more special case is
nevertheless sufficient to justify the theorem in full generality.

I Often justified by some sort of symmetry or invariance in the
problem, particularly in geometry:

I Choose a convenient origin based on invariance under
translation

I Choose convenient coordinate axes based on rotation
invariance
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HOL Light ‘WLOG’ tactics

I A series of HOL Light tactics that automatically allow the
user to make such WLOG steps, generating a formal proof
behind the scenes.

I Proves automatically that a suitable transformation T exists

I Systematically rewrites quantifiers ∀x . φ[x ] to ∀x . φ[T (x)],
and likewise with other quantifiers, set abstractions etc.

I Uses a stored list of ‘invariance’ theorems to automatically lift
up and eliminate the transformation.

Often allows the final coordinatewise proof to be much easier and
more natural.
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Avoiding coordinate reduction

I Performing a coordinate reduction is a general approach, but
often unnatural and inefficient, even with a good choice of
coordinates.

I Attractive to consider other algorithms (e.g. the area method,
bracket algebra, . . . )

I In collaboration with Solovay and Arthan, we considered
general decision procedures for various theories of vector
spaces

I Many interesting results, both positive and negative, and
some practically useful outcomes.
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Vector space axioms

∀u v w. u + (v + w) = (u + v) + w
∀v w. v + w = w + v
∀v. 0 + v = v
∀v. − v + v = 0
∀a v w. a(v + w) = av + aw
∀a b v. (a + b)v = av + bv
∀v. 1v = v
∀a b v. (ab)v = a(bv)
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The theory of real inner product spaces

The language of vector spaces plus an inner product operation
V × V → S written 〈−,−〉 and satisfying:

∀v w. 〈v,w〉 = 〈w, v〉
∀u v w. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
∀a v,w. 〈av,w〉 = a〈v,w〉
∀v. 〈v, v〉 ≥ 0
∀v. 〈v, v〉 = 0⇔ v = 0
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Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded with
inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k.

37



Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded with
inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k.

37



Decidability of inner product spaces

I (Solovay): theory of real inner product spaces is decidable,
and admits quantifier elimination in a language expanded with
inequalities on dimension.

I Since inner product spaces are a conservative extension of
vector spaces, the theory of vector spaces is also decidable

I (Arthan) a formula with k vector variables holds in all inner
product spaces iff it holds in each Rn for 0 ≤ n ≤ k.

37



The theory of real normed spaces

The language of vector spaces plus a norm operation V → S
written ‖ − ‖ and satisfying:

∀v. ‖v‖ = 0⇒ v = 0
∀a v. ‖av‖ = |a|‖v‖
∀v w. ‖v + w‖ ≤ ‖v‖+ ‖w‖
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Normed spaces: better or worse?

I (Solovay) The full theory of real normed spaces is strongly
undecidable (same many-one degree as the true Π2

1 sentences
in third-order arithmetic).

I (Arthan) Even the purely additive theory of 2-dimensional
normed spaces is strongly undecidable.

I (Harrison) However the ∀ (purely universal) fragment of the
theory is decidable. In the additive case, can be decided by a
generalization of parametrized linear programming.

I (Arthan) This decidability result is quite sharp: both the ∀∃
and ∃∀ fragments, and even the (∀)⇒ (∀) fragments are
undecidable.
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Real application in formalizing complex analysis
An example where our linear normed space procedure is much
more efficient than coordinate reduction:

|- abs(norm(w - z) - r) = d /\

norm(u - w) < d / &2 /\

norm(x - z) = r

==> d / &2 <= norm(x - u)

z

w

x

r

d

u

d/2
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Conclusions

I Practical and efficient certification is an interesting problem
for symbolic computation algorithms generally.

I Ability to generate certificates makes it much easier to
integrate a tool soundly into a formal framework, which has
value in verification and in mathematics

I Nonlinear arithmetic is a particularly challenging example for
such certification, and has many potential applications.

I There are strong motivations for looking for higher-level (more
efficient or conceptual) approaches to such problems.
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