Formal Verification Methods
5: Floating-point verification

John Harrison
Intel Corporation

Marktoberdorf 2003

Mon 4th August 2003 (10:35 — 11:20)

Summary

e [tanium overview

e Floating point numbers and Itanium formats
e HOL floating point theory

e Square root algorithm

e Correctness proof in HOL

ltanium overview

The Intel® ltanium® architecture is a new 64-bit computer
architecture jointly developed by Hewlett-Packard and Intel,
implemented in the Itanium Processor Family (IPF).

e An instruction format encoding parallelism explicitly
e Instruction predication
e Speculative and advanced loads

e Upward compatibility with 1A-32 (x86).

Floating point numbers

There are various different schemes for floating point numbers.
Usually, the floating point numbers are those representable in some
number n of significant binary digits, within a certain exponent range,
l.e.

(—1)% x do.drds -+ - dy,, x 2°

where
e Field s € {0,1} is the sign

e Field dy.d1d> - - - d,, is the significand and d.ds - - - d,, is the
fraction. These are not always used consistently; sometimes
‘mantissa’ is used for one or the other

e Field e is the exponent.

We often refer to p = n + 1 as the precision.

ltanium floating point formats

A floating point format is a particular allowable precision and
exponent range.

ltanium supports a multitude of possible formats, e.g.
e |[EEE single: p =24 and —126 <e <127
e |IEEE double: p =53 and —1022 < e <1023
e |[EEE double-extended: p = 64 and —16382 < e < 16383
e Itanium register format: p = 64 and —65534 < e < 65535

There are various other hybrid formats.

The highest precision, ‘register’, is normally used for intermediate
calculations in algorithms.

HOL floating point theory (1)

We have formalized a generic floating point theory in HOL, which can
be applied to all the ltanium formats, and others supported in
software such as quad precision.

A floating point format is identified by a triple of natural numbers fmt.

The corresponding set of real numbers is format(fmt), or ignoring
the upper limit on the exponent, iformat(fmt).

Floating point rounding returns a floating point approximation to a
real number, ignoring upper exponent limits. More precisely

round fmt rc x

returns the appropriate member of iformat(fmt) for an exact value
x, depending on the rounding mode rc, which may be one of
Nearest, Down, Up and Zero.

HOL floating point theory (2)

For example, the definition of rounding down is:

| - (round fmt Down X = closest
{a | a IN iformat fmt A a <= x} x)

We prove a large number of results about rounding, e.g.

| - = (precision fmt = 0) A x IN iformat fmt

= (round fmt rc x = X)

that rounding is monotonic:

|- —(precision fmt = 0) A x <=y

— round fmt rc x <= round fmt rc y

and that subtraction of nearby floating point numbers is exact:

|- a IN i1format fmt A b IN i1format fmt A

a / &2 <= b AN b <= &2 x a = (b - a) IN iformat fmt

The (1 + €) property

Most of the routine parts of floating point proofs rely on either an
absolute or relative bound on the effect of floating point rounding.
The key theorem underlying relative error analysis is the following:

| - normalizes fmt x A

= (precision fmt = 0)
= de. abs(e) <= mu rc / &2 pow (precision fmt - 1) A
(round fmt rc x = x * (&1 + e))

This says that given that the value being rounded is in the range of
normalized floating point numbers, then rounding perturbs the exact
result by at most a relative error bound depending only on the
floating point precision and rounding control.

Derived rules apply this result to computations in a floating point
algorithm automatically, discharging the conditions as they go.

Levels of verification

Verifying higher-level floating-point algorithms based on assumed
correct behavior of hardware primitives.

sin correct

A

fma correct

A

gate-level description

This is a typical specification for lower-level verification.

Division and square root on Iltanium

There are no hardware instructions (in Itanium mode) for division and
square root. Instead, approximation instructions are provided, e.g.

frsqrta.sf fi,p2 = f3

In normal cases, this returns in f; an approximation to \/% with
worst-case relative error of about 278-%°,

The particular approximation is specified in the Itanium architecture.

Software is intended to start from this approximation and refine it to
an accurate square root, using for example Newton-Raphson
iteration, power series expansions or any other technique that seems
effective.

Correctness issues

The IEEE standard states that all the algebraic operations should
give the closest floating point number to the true answer, or the
closest number up, down, or towards zero in other rounding modes.

It is easy to get within a bit or so of the right answer, but meeting the
IEEE spec is significantly more challenging.

In addition, all the flags need to be set correcily, e.g. inexact,
underflow,

There are various methods for designing IEEE-correct software
algorithms, and we will show one such algorithm for square root and
show how it was formally verified.

Related techniques can be used for division.

10

Our algorithm example

Our example is an algorithm for square roots using only single
precision computations (hence suitable for SIMD). It is built using two
basic ltanium operations:

e The reciprocal square root approximation frsqrta described
above, which given an input a returns an approximation to 1/+/a
with relative error at most about 2755,

e The fused multiply add and its negated variant, which calculates
xy + z or z — xy with just a single rounding error.

Because it only uses single precision calculations, readers can ‘try it
at home'.

11

The square root algorithm

1.

Yo = (1 +e¢)

a

S

1
b—2a

20 = Y§
S0 = ayo
d=1—bz

k = ayo — So
Ho = 3yo
e::1+-%d
To = dSo + k
S1 = S0 + €1p
c=1+de

di =a— 5151
H{ = cHp
S=51+diH;

f(p)rsgrta
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single

12

Proving IEEE correctness

Provided the input number is in a certain range, this algorithm returns
the correctly rounded square root and sets the |IEEE flags correctly.

How do we prove that the result is correctly rounded? We will
concentrate on round-to-nearest mode, which is the most interesting
case. What the algorithm actually returns is the result of rounding the
value:

S* =51 +dH;

The algorithm is correct if this is always the same as the result of
rounding the exact square root \/a.

Moreover, properties of this value S*, e.g. whether it is already
exactly a floating point number, determine the final flag settings
(intermediate steps do not set flags). We also want to make sure
these properties are the same as for the exact square root.

13

Condition for perfect rounding

We prove perfect rounding using a formalization of a technique
described here:

http://developer.intel.com/technology/itj/g21998/articles/art_3.htm

A sufficient condition for perfect rounding is that the closest floating
point number to /a is also the closest to S*. That is, the two real
numbers y/a and S* never fall on opposite sides of a midpoint
between two floating point numbers.

In the following diagram this is not true; /a would round to the
number below it, but S* to the number above it.

Y

14

Exclusion zones

It would suffice if we knew for any midpoint m that:

Va— 5" <|Va—m]|
In that case /a and S* cannot lie on opposite sides of m:

|— = (precision fmt = 0) A
(Vm. m IN midpoints fmt = abs(x - y) < abs(x - m))

— (round fmt Nearest x = round fmt Nearest V)

And this is possible to prove, because in fact every midpoint m is
surrounded by an ‘exclusion zone’ of width 4,,, > 0 within which the
square root of a floating point number cannot occur.

However, this 6 can be quite small, considered as a relative error. If
the floating point format has precision p, then we can have
Om =2 |m]|/2%PT2,

15

Difficult cases

So to ensure the equal rounding property, we need to make the final
approximation before the last rounding accurate to more than twice
the final accuracy.

The fused multiply-add can help us to achieve just under twice the
accuracy, but to do better is slow and complicated. How can we
bridge the gap?

Only a fairly small number of possible inputs a can come closer than
say 2~ (2»—1)_ For all the other inputs, a straightforward relative error
calculation (largely automated in HOL) yields the result.

We can then use number-theoretic reasoning to isolate the additional
cases we need to consider, then simply try them and see! More than
likely they will all be correct.

16

Isolating difficult cases

By some straightforward mathematics, formalizable in HOL without
difficulty, one can show that the difficult cases have mantissas m,
considered as p-bit integers, such that one of the following
diophantine equations has a solution & for d a small integer.

WH2m = k% + d

or
2Pt lm =k* +d

We consider the equations separately for each chosen d. For
example, we might be interested in whether this has a solution:

R T

If so, the possible m values are added to the set of difficult cases.

17

Solving the equations

lt's quite easy to program HOL to enumerate all the solutions of such
diophantine equations, returning a disjunctive theorem of the form:

2P 'm =k +d) = (m=n1) V...V (m=n)

The procedure simply uses even-odd reasoning and recursion on
the power of two (effectively so-called ‘Hensel lifting’). For example, if

2%om =k*> -7
then we know k£ must be odd; we can write £ = 2k’ + 1 and get:
2°*m = 2k +2k' — 3

In general, we recurse down to an equation that is trivially
unsatisfiable, as here, or immediately solvable.

18

Conclusions

Because of HOLs mathematical generality, all the reasoning needed
can be done in a unified way with the customary HOL guarantee of
soundness:

e Underlying pure mathematics

e Formalization of floating point operations

e Proof that the condition tested ensures perfect rounding

e Routine relative error computation for result before rounding
e Number-theoretic isolation of difficult cases

e Explicit computation with those cases

Moreover, because HOL is programmable, many of these parts can
be, and have been, automated.

19

