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Formalization of Mathematics



Some formal proofs from 1910

This is p379 of Whitehead and Russell’s Principia Mathematica.



Zooming in . . .



100 years since Principia Mathematica

Principia Mathematica was the first sustained and successful actual
formalization of mathematics.

I This practical formal mathematics was to forestall objections
to Russell and Whitehead’s ‘logicist’ thesis, not a goal in itself.

I The development was difficult and painstaking, and has
probably been studied in detail by very few.

I Subsequently, the idea of actually formalizing proofs has not
been taken very seriously, and few mathematicians do it today.

But thanks to the rise of the computer, the actual formalization of
mathematics is attracting more interest.
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The importance of computers for formal proof

Computers can both help with formal proof and give us new
reasons to be interested in it:

I Computers are expressly designed for performing formal
manipulations quickly and without error, so can be used to
check and partly generate formal proofs.

I Correctness questions in computer science (hardware,
programs, protocols etc.) generate a whole new array of
difficult mathematical and logical problems where formal proof
can help.

Because of these dual connections, interest in formal proofs is
strongest among computer scientists, but some ‘mainstream’
mathematicians are becoming interested too.
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Russell was an early fan of mechanized formal proof

Newell, Shaw and Simon in the 1950s developed a ‘Logic Theory
Machine’ program that could prove some of the theorems from
Principia Mathematica automatically.

“I am delighted to know that Principia Mathematica can
now be done by machinery [...] I am quite willing to
believe that everything in deductive logic can be done by
machinery. [...] I wish Whitehead and I had known of
this possibility before we wasted 10 years doing it by
hand.” [letter from Russell to Simon]

Newell and Simon’s paper on a more elegant proof of one result in
PM was rejected by JSL because it was co-authored by a machine.



Russell was an early fan of mechanized formal proof

Newell, Shaw and Simon in the 1950s developed a ‘Logic Theory
Machine’ program that could prove some of the theorems from
Principia Mathematica automatically.

“I am delighted to know that Principia Mathematica can
now be done by machinery [...] I am quite willing to
believe that everything in deductive logic can be done by
machinery. [...] I wish Whitehead and I had known of
this possibility before we wasted 10 years doing it by
hand.” [letter from Russell to Simon]

Newell and Simon’s paper on a more elegant proof of one result in
PM was rejected by JSL because it was co-authored by a machine.



Russell was an early fan of mechanized formal proof

Newell, Shaw and Simon in the 1950s developed a ‘Logic Theory
Machine’ program that could prove some of the theorems from
Principia Mathematica automatically.

“I am delighted to know that Principia Mathematica can
now be done by machinery [...] I am quite willing to
believe that everything in deductive logic can be done by
machinery. [...] I wish Whitehead and I had known of
this possibility before we wasted 10 years doing it by
hand.” [letter from Russell to Simon]

Newell and Simon’s paper on a more elegant proof of one result in
PM was rejected by JSL because it was co-authored by a machine.



Formalization in current mathematics

Traditionally, we understand formalization to have two
components, corresponding to Leibniz’s characteristica universalis
and calculus ratiocinator.

I Express statements of theorems in a formal language, typically
in terms of primitive notions such as sets.

I Write proofs using a fixed set of formal inference rules, whose
correct form can be checked algorithmically.

Correctness of a formal proof is an objective question,
algorithmically checkable in principle.
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Mathematics is reduced to sets

The explication of mathematical concepts in terms of sets is now
quite widely accepted (see Bourbaki).

I A real number is a set of rational numbers . . .

I A Turing machine is a quintuple (Σ,A, . . .)

Statements in such terms are generally considered clearer and more
objective. (Consider pathological functions from real analysis . . . )



Symbolism is important

The use of symbolism in mathematics has been steadily increasing
over the centuries:

“[Symbols] have invariably been introduced to make
things easy. [. . . ] by the aid of symbolism, we can make
transitions in reasoning almost mechanically by the eye,
which otherwise would call into play the higher faculties
of the brain. [. . . ] Civilisation advances by extending the
number of important operations which can be performed
without thinking about them.” (Whitehead, An
Introduction to Mathematics)



Formalization is the key to rigour

Formalization now has a important conceptual role in principle:

“. . . the correctness of a mathematical text is verified by
comparing it, more or less explicitly, with the rules of a
formalized language.” (Bourbaki, Theory of Sets)
“A Mathematical proof is rigorous when it is (or could
be) written out in the first-order predicate language L(∈)
as a sequence of inferences from the axioms ZFC, each
inference made according to one of the stated rules.”
(Mac Lane, Mathematics: Form and Function)

What about in practice?



Mathematicians don’t use logical symbols

Variables were used in logic long before they appeared in
mathematics, but logical symbolism is rare in current mathematics.
Logical relationships are usually expressed in natural language, with
all its subtlety and ambiguity.
Logical symbols like ‘⇒’ and ‘∀’ are used ad hoc, mainly for their
abbreviatory effect.

“as far as the mathematical community is concerned
George Boole has lived in vain” (Dijkstra)



Mathematicians don’t do formal proofs . . .

The idea of actual formalization of mathematical proofs has not
been taken very seriously:

“this mechanical method of deducing some mathematical
theorems has no practical value because it is too
complicated in practice.” (Rasiowa and Sikorski, The
Mathematics of Metamathematics)
“[. . . ] the tiniest proof at the beginning of the Theory of
Sets would already require several hundreds of signs for
its complete formalization. [. . . ] formalized mathematics
cannot in practice be written down in full [. . . ] We shall
therefore very quickly abandon formalized mathematics”
(Bourbaki, Theory of Sets)



. . . Poincaré’s had a particular aversion . . .

I see in logistic only shackles for the inventor. It is no aid
to conciseness — far from it, and if twenty-seven
equations were necessary to establish that 1 is a number,
how many would be needed to prove a real theorem?
If we distinguish, with Whitehead, the individual x, the
class of which the only member is x and [...] the class of
which the only member is the class of which the only
member is x [...], do you think these distinctions, useful
as they may be, go far to quicken our pace?



. . . and the few people that do end up regretting it

“my intellect never quite recovered from the strain of
writing [Principia Mathematica]. I have been ever since
definitely less capable of dealing with difficult
abstractions than I was before.” (Russell, Autobiography)

However, now we have computers to check and even automatically
generate formal proofs.
Our goal is now not so much philosphical, but to achieve a real,
practical, useful increase in the precision and accuracy of
mathematical proofs.



Are proofs in doubt?

Mathematical proofs are subjected to peer review, but errors often
escape unnoticed.

“Professor Offord and I recently committed ourselves to
an odd mistake (Annals of Mathematics (2) 49, 923,
1.5). In formulating a proof a plus sign got omitted,
becoming in effect a multiplication sign. The resulting
false formula got accepted as a basis for the ensuing
fallacious argument. (In defence, the final result was
known to be true.)” (Littlewood, Miscellany)

A book by Lecat gave 130 pages of errors made by major
mathematicians up to 1900.
A similar book today would no doubt fill many volumes.



Even elegant textbook proofs can be wrong

“The second edition gives us the opportunity to present
this new version of our book: It contains three additional
chapters, substantial revisions and new proofs in several
others, as well as minor amendments and improvements,
many of them based on the suggestions we received. It
also misses one of the old chapters, about the “problem
of the thirteen spheres,” whose proof turned out to need
details that we couldn’t complete in a way that would
make it brief and elegant.” (Aigner and Ziegler, Proofs
from the Book)



Most doubtful informal proofs

What are the proofs where we do in practice worry about
correctness?

I Those that are just very long and involved. Classification of
finite simple groups, Seymour-Robertson graph minor theorem

I Those that involve extensive computer checking that cannot
in practice be verified by hand. Four-colour theorem, Hales’s
proof of the Kepler conjecture

I Those that are about very technical areas where complete
rigour is painful. Some branches of proof theory, formal
verification of hardware or software



Formalized theorems and libraries of mathematics

Interactive provers have been used to check quite non-trivial
results, albeit not close to today’s research frontiers, e.g.

I Jordan Curve Theorem — Tom Hales (HOL Light), Andrzej
Trybulec et al. (Mizar)

I Prime Number Theorem — Jeremy Avigad et al
(Isabelle/HOL), John Harrison (HOL Light)

I Dirichlet’s Theorem — John Harrison (HOL Light)

I First and second Cartan Theorems — Marco Maggesi et al
(HOL Light)

According to the Formalizing 100 theorems page, 88% of a list of
the ‘top 100 mathematical theorems’ have been formalized using
interactive theorem provers.
In the process, provers are building up ever-larger libraries of
pre-proved theorems that can be deployed in future proofs.
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The four-colour Theorem

Early history indicates fallibility of the traditional social process:

I Proof claimed by Kempe in 1879

I Flaw only point out in print by Heaywood in 1890

Later proof by Appel and Haken was apparently correct, but gave
rise to a new worry:

I How to assess the correctness of a proof where many explicit
configurations are checked by a computer program?

In 2005, Georges Gonthier formalized the entire proof in Coq,
making use of the “SSReflect” proof language and replacing
ad-hoc programs by evaluation within the logical kernel.
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The odd-order theorem

I The fact that every finite group of odd order is solvable was a
landmark result proved by Feit and Thompson in 1963.

I At the time it was one of the longest mathematical proofs
ever published, and it plays a major part in the full
classification of simple groups.

I In 2012 a team led by Georges Gonthier completed a
formalization in Coq, consisting of about 150, 000 lines of
code.

I A fairly extensive library of results in algebra was developed in
the process, including Galois theory and group characters.

I Uses the “SSReflect” proof language for Coq that was used in
the four-colour proof.
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The Kepler conjecture

The Kepler conjecture states that no arrangement of identical balls
in ordinary 3-dimensional space has a higher packing density than
the obvious ‘cannonball’ arrangement.
Hales, working with Ferguson, arrived at a proof in 1998:

I 300 pages of mathematics: geometry, measure, graph theory
and related combinatorics, . . .

I 40,000 lines of supporting computer code: graph enumeration,
nonlinear optimization and linear programming.

Hales submitted his proof to Annals of Mathematics . . .



The response of the reviewers

After a full four years of deliberation, the reviewers returned:

“The news from the referees is bad, from my perspective.
They have not been able to certify the correctness of the
proof, and will not be able to certify it in the future,
because they have run out of energy to devote to the
problem. This is not what I had hoped for.
Fejes Toth thinks that this situation will occur more and
more often in mathematics. He says it is similar to the
situation in experimental science — other scientists
acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to
consistency checks. He thinks that the mathematical
community will have to get used to this state of affairs.”



The birth of Flyspeck

Hales’s proof was eventually published, and no significant error has
been found in it. Nevertheless, the verdict is disappointingly
lacking in clarity and finality.
As a result of this experience, the journal changed its editorial
policy on computer proof so that it will no longer even try to check
the correctness of computer code.
Dissatisfied with this state of affairs, Hales initiated a project
called Flyspeck to completely formalize the proof.



Flyspeck

Flyspeck = ‘Formal Proof of the Kepler Conjecture’.

“In truth, my motivations for the project are far more
complex than a simple hope of removing residual doubt
from the minds of few referees. Indeed, I see formal
methods as fundamental to the long-term growth of
mathematics. (Hales, The Kepler Conjecture)

The formalization effort has been running for a few years now with
a significant group of people involved, some doing their PhD on
Flyspeck-related formalization.
In parallel, Hales has simplified the informal proof using ideas from
Marchal, significantly cutting down on the formalization work.



Flyspeck: current status

A large team effort led by Hales has brought Flyspeck close to
completion:

I Essentially all the ordinary mathematics has been formalized
in HOL Light: Euclidean geometry, measure theory,
hypermaps, fans, results on packings.

I The graph enumeration process has been verified (and
improved in the process) by Tobias Nipkow in Isabelle/HOL.

I A highly optimized way of formally proving the linear
programming part in HOL Light has been developed by Alexey
Solovyev, following earlier work by Steven Obua.

I A method has been developed by Alexey Solovyev to prove all
the nonlinear optimization results, though it still needs a lot of
runtime to solve them all.
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Univalent Foundations

I Provers already use quite a variety of foundations, including
variants of ZFC set theory (Mizar), higher-order logic (HOL
and relatives), and constructive type theory (Coq).

I Vladimir Voevodsky proposed a new “Homotopy Type
Theory” to give ‘univalent’ foundations for mathematics,
based on relations between homotopy and type theory.

I In some sense it allows isomorphic objects to be identified,
formalizing an intuitive principle often used by
mathematicians.

I Voevodsky has led a major research effort resulting in new
results, implementations in Coq and Agda, and a textbook.

An encouraging feature of both Flyspeck and Univalent
Foundations is that the driving force behind each one is a major
mainstream mathematician.
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Formal Verification



Formal verification

In most software and hardware development, we lack even informal
proofs of correctness.
Correctness of hardware, software, protocols etc. is routinely
“established” by testing.
However, exhaustive testing is impossible and subtle bugs often
escape detection until it’s too late.
The consequences of bugs in the wild can be serious, even deadly.
Formal verification (proving correctness) seems the most
satisfactory solution, but gives rise to large, ugly proofs.



Recent formal proofs in computer system verification

Some successes for verification using theorem proving technology:

I CompCert verified compiler from significant subset of the C
programming language into PowerPC assembler (Xavier Leroy
et al., Coq)

I Designed-for-verification version of L4 operating system
microkernel (Gerwin Klein et al., Isabelle/HOL).

Again, these indicate that complex and subtle computer systems
can be verified, but significant manual effort was needed, perhaps
tens of person-years for L4.



A diversity of activities

Intel is best known as a hardware company, and hardware is still the
core of the company’s business. However this entails much more:

I Microcode

I Firmware

I Protocols

I Software

If the Intel Software and Services Group (SSG) were split off as a
separate company, it would be in the top 10 software companies
worldwide.
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worldwide.



A diversity of verification problems

This gives rise to a corresponding diversity of verification problems,
and of verification solutions.

I Propositional tautology/equivalence checking (FEV)

I Symbolic simulation

I Symbolic trajectory evaluation (STE)

I Temporal logic model checking

I Combined decision procedures (SMT)

I First order automated theorem proving

I Interactive theorem proving

Most of these techniques (trading automation for generality /
efficiency) are in active use at Intel.



A spectrum of formal techniques

Traditionally, formal verification has been focused on complete
proofs of functional correctness.
But recently there have been notable successes elsewhere for
‘semi-formal’ methods involving abstraction or more limited
property checking.

I Airbus A380 avionics

I Microsoft SLAM/SDV

One can also consider applying theorem proving technology to
support testing or other traditional validation methods like path
coverage.
These are all areas of interest at Intel.



Models and their validation

We have the usual concerns about validating our specs, but also
need to pay attention to the correspondence between our models
and physical reality.

Actual system

Design model

Formal specification

Actual requirements
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Physical problems

Chips can suffer from physical problems, usually due to overheating
or particle bombardment (‘soft errors’).

I In 1978, Intel encountered problems with ‘soft errors’ in some
of its DRAM chips.

I The cause turned out to be alpha particle emission from the
packaging.

I The factory producing the ceramic packaging was on the
Green River in Colorado, downstream from the tailings of an
old uranium mine.

However, these are rare and apparently well controlled by existing
engineering best practice.
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The FDIV bug

Formal methods are more useful for avoiding design errors such as
the infamous FDIV bug:

I Error in the floating-point division (FDIV) instruction on some
early IntelPentium processors

I Very rarely encountered, but was hit by a mathematician
doing research in number theory.

I Intel eventually set aside US $475 million to cover the costs.

This did at least considerably improve investment in formal
verification.
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Layers of verification

If we want to verify from the level of software down to the
transistors, then it’s useful to identify and specify intermediate
layers.

I Implement high-level floating-point algorithm assuming
addition works correctly.

I Implement a cache coherence protocol assuming that the
abstract protocol ensures coherence.

Many similar ideas all over computing: protocol stack, virtual
machines etc.
If this clean separation starts to break down, we may face much
worse verification problems. . .
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How some of our verifications fit together

For example, the fma behavior is the assumption for my
verification, and the conclusion for someone else’s.

gate-level description

fma correct

sin correct
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But this is not quite trivial when the verifications use different
formalisms!



Our work

We have formally verified correctness of various floating-point
algorithms.

I Division and square root (Marstein-style, using fused
multiply-add to do Newton-Raphson or power series
approximation with delicate final rounding).

I Transcendental functions like log and sin (table-driven
algorithms using range reduction and a core polynomial
approximations).

Proofs use the HOL Light prover

I http://www.cl.cam.ac.uk/users/jrh/hol-light

http://www.cl.cam.ac.uk/users/jrh/hol-light


Our HOL Light proofs

The mathematics we formalize is mostly:

I Elementary number theory and real analysis

I Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

I Verifying solution set of some quadratic congruences

I Proving primality of particular numbers

I Proving bounds on rational approximations

I Verifying errors in polynomial approximations



Example: tangent algorithm

I The input number X is first reduced to r with approximately
|r | ≤ π/4 such that X = r + Nπ/2 for some integer N. We
now need to calculate ±tan(r) or ±cot(r) depending on N
modulo 4.

I If the reduced argument r is still not small enough, it is
separated into its leading few bits B and the trailing part
x = r − B, and the overall result computed from tan(x) and
pre-stored functions of B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B)− tan(x)

I Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.
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Overview of the verification

To verify this algorithm, we need to prove:

I The range reduction to obtain r is done accurately.

I The mathematical facts used to reconstruct the result from
components are applicable.

I Stored constants such as tan(B) are sufficiently accurate.

I The power series approximation does not introduce too much
error in approximation.

I The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them
require more pure mathematics than might be expected.
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Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X − Nπ/2 is small.
To check that the computation is accurate enough, we need to
know:

How close can a floating point number be to an integer
multiple of π/2?

Even deriving the power series (for 0 < |x | < π):

cot(x) = 1/x − 1

3
x − 1

45
x3 − 2

945
x5 − . . .

is much harder than you might expect.



Why HOL Light?

We need a general theorem proving system with:

I High standard of logical rigor and reliability

I Ability to mix interactive and automated proof

I Programmability for domain-specific proof tasks

I A substantial library of pre-proved mathematics

Other theorem provers such as ACL2, Coq and PVS have also been
used for verification in this area (see other talks here).



Conclusions

I Formal proof is still rather painstaking, but computers are
making it relatively less difficult.

I More and more mathematics is being successfully formalized,
including some from the 20th century and even
near-contemporary results like Kepler.

I Formalizing mathematics is not disjoint from formal
verification but can help to support it by building up
background knowledge.


