
Optimizing Scientific Libraries for the Itanium

John Harrison
Intel Corporation

Gelato Federation Meeting, HP Cupertino

May 25, 2005

0

Quick summary

Intel supplies ‘drop-in replacement’ versions of common libraries
optimized for particular (micro-)architectures.

We’ll focus on our version of the standard math library libm for the
Intel Itanium architecture.

Provides superior speed and/or accuracy to typical generic versions
(FDLIBM etc.)

Special features of Itanium make for some particularly high-quality
implementations.

1

What makes Itanium special?

• Parallelism, many registers, predication and explicit scheduling
— can consider sophisticated algorithms with parallel threads

• Fused multiply-add and extended precision — useful for
polynomials and eases many accuracy-preserving techniques

• Non-atomic division and square root — allows optimized
integration into more complicated algorithms

• Multiple status fields — intermediate computations can use
higher intermediate precision with no performance hit

• Predication and register renaming — can eliminate most control
flow and pipeline multiple instances

2

“Naive” table-driven algorithm

A naive algorithm for ex illustrates the key steps of the typical
table-driven algorithm:

• Reduction: split x = N + r where N is an integer and |r| ≤ 1/2.

• Approximation: er = 1 + r + r2/2! + · · · rn/n!

• Reconstruction: ex = eNer with eN taken from a table.

Same pattern is used in most real algorithms, but with careful
attention to numeric accuracy and the tradeoff between speed and
table size.

3

Real table-driven algorithm

• The input number X is first reduced to r with approximately
|r| ≤ π/4 such that X = r + Nπ/2 for some integer N . We now
need to calculate ±tan(r) or ±cot(r) depending on N modulo 4.

• If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part x = r − B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a polynomial (plus reciprocal) approximation is used for
tan(r), cot(r) or tan(x) as appropriate.

4

Polynomials using fma

A traditional approach to computing polynomials is “Horner’s rule”:

a0 + x(a1 + x(a2 + x(a3 + · · · + x(an−1 + xan) · · ·)))

Minimizes the total number of operations and usually has good
numerical properties.

Even better on Itanium. The core FP operation is the fused
multiply-add, which computes a · b + c in one operation.

Horner’s rule is used in most of the throughput-optimized algorithms.

5

Binary splitting of polynomials

If our concern is latency, we can do better using binary splitting. This
arrangement yields 3 fma latencies instead of 6:

1 + d + d2 + · · · + d6 = 1 + (1 + d + d2)(d4 + d)

More generally, we can do most n-degree polynomials in around
log2(n) latencies, thanks to pipelining and two floating-point units.

Using extended precision, there are few accuracy worries with
algebraic rearrangement. (Need a little care over monotonicity!)

So our algorithms often use longer polynomials than the norm, given
that they can be computed quickly and accurately.

6

Exploiting non-atomic division

On Itanium, there’s no atomic division operation, but frcpa returns a
reciprocal approximation good to about 8 bits.

Techniques largely due to Markstein allow this to be refined to an
IEEE-correct quotient just using standard fma operations.

• Automatically inherits pipelining from core operations, giving high
throughput and ability to schedule in parallel with other work

• Simpler hardware

• Can more flexibly use specially optimized algorithms, e.g. not
force IEEE rounding of intermediate results

• Can exploit the reciprocal approximation itself for various tricks

7

Using parallelism and non-atomic division

In computing atan(x) for x > 1 we actually compute π/2 − atan(1/x).
It seems we have a division in the critical path.

But eventually we are computing a polynomial in 1/x, and we can
factor out the highest term:

p(1/x) = 1/x45q(x)

Now let c = frcpa(x) and b = c · x − 1. We can actually compute the
following, where all three terms in the product can be evaluated in
parallel

p(1/x) = c45r(b)q(x)

where r(b) is a power series expansion of 1
(1+b)45 .

8

The frcpa trick

Though designed for starting a division, frcpa can speed up range
reduction for some multiplicative functions.

Let c = frcpa(x) and r = c · x − 1. Then:

ln(x) = ln((1 + r)/c) = ln(1 + r) − ln(c)

We have a precomputed table of values for ln(c), and ln(1 + r) is
approximated by a short power series.

Thanks to this, the logarithm is about the fastest of our
transcendentals!

9

Some results

Figures for libm latency and VML throughput, double precision.

Function Latency Throughput Accuracy (ulps)

atan 56 13.3 0.501

cbrt 34 10.2 0.501

exp 43 6.2 0.502

log 31 11.2 0.501

sin 49 8.2 0.503

tan 63 11.3 0.507

All figures for double precision “common path”. Some cases may be
quicker (exp(0)) or slower (sin(21000)).

Accuracy figures are for libm; those for VML may differ slightly.

10

Conclusions

Using Itanium’s architectural features to the full, we can provide a
libm with industry-leading speed and accuracy.

Almost every special architectural feature of Itanium is fully exploited
here, occasionally in unexpected ways.

Some current work:

• Investigate perfectly rounded transcendental functions (with
reasonable performance)

• Fill out functionality with high-quality versions of more obscure
functions (e.g. Bessel functions Jn(x) and Yn(x)).

11

Further reading

For quick surveys:

New Algorithms for Improved Transcendental Functions on
IA-64, Shane Story and Peter Tang, 14th IEEE Computer
Arithmetic Conference, 1999.

The Computation of Transcendental Functions on the IA-64
Architecture, John Harrison, Ted Kubaska, Shane Story and
Peter Tang, Intel Technology Journal Q4 1999.

Much more detailed information:

IA-64 and elementary functions: speed and precision, Peter
Markstein, Hewlett-Packard Professional Books, 2000.

Scientific Computing on Itanium-based systems, Marius
Cornea, John Harrison and Peter Tang, Intel Press 2003.

12

