Introduction to Functional Programming: Lecture 9

Introduction to
Functional Programming

Topics covered:

e Symbolic computation

e Data representation
Prettyprinting
Diftferentiation

Simplification by rewriting

John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Symbolic computation

This covers applications where manipulation of
mathematical expressions, in general containing
variables, is emphasized at the expense of actual

numerical calculation.

There are several successful ‘computer algebra

systems’ such as Axiom, Maple and Mathematica,

which can do certain symbolic operations that are

useful in mathematics.

Examples include factorizing polynomials and

differentiating and integrating expressions.

We will show how ML can be used for such

applications. Our example will be symbolic

differentiation.

This will illustrate all the typical components of
symbolic computation systems: data
representation, internal algorithms, parsing and
prettyprinting.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Data representation

We will allow mathematical expressions to be

built up from variables and constants by the

application of n-ary operators.

Therefore we define a recursive type as follows:

- datatype term =
Var of string
| Const of string

| Fn of string * (term list);

For example the expression
sin(x +y)/cos(x —exp(y)) — In(l + x) is
represented by:

Fn("-",
[Fn("/", [Fn("sin", [Fn("+", [Var "x",
Var "y"1D 1),
Fn("cos", [Fn("-", [Var "x",
Fn("exp",
[Var "y"1D)1)1D1),
Fn("1n", [Fn("+", [Const "1", Var "x"1)1)1);

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

The need for parsing and printing

Reading and writing expressions in their raw form

is rather unpleasant. This is a general problem in
all symbolic computation systems. Typically one

wants:

e A parser to accept input in human-readable
form and translate it into the internal

representation

o A prettyprinter to translate output from the
internal representation back to a

human-readable form.

We will use parsing as another major example of
functional programming, so we will defer that for

NnNOW.

However we will now write a simple printer for

our expressions.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Prettyprinting expressions

How do we want to print expressions?

Variables and constants are just written as

their names.

Ordinary n-ary functions applied to
arguments are written by juxtaposing the

function and a bracketed list of arguments,

e.g. f(xy,...,xp,).

Infix binary functions like + are written in

between their arguments.

Brackets are used where necessary for
disambiguation.

Infix operators have a notion of precedence to

reduce the need for brackets.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Storing precedences

We can have a list of binary operators together

with their precedences, e.g.

- val infixes = [("+",10), ("-",10),
(||*||,2o) , ("/",20)] :

This sort of list, associating data with keys, is
called an association list. To get the data

associated with a key we use the following:

- fun assoc a ((x,y)::rest) =

if a = x then y else assoc a rest;
In our case, we define:
- fun get_precedence s = assoc s infixes;

This procedure of linear search is inefficient, but
it is simple and adequate for small examples.
Techniques like hashing are better for

heavyweight applications.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Making precedences modifiable

Because of static binding, changing the list of

infixes does not change get_precedence.

However we can make infixes a reference

instead and then it is modifiable:

val infixes = ref [("+",10), ("-",10),
("*",20) , ("/",20)] :

fun get_precedence s =
assoc s (!infixes);
val get_precedence = fn : string -> int
get_precedence """,
Uncaught exception:
Match
infixes := (""",30)::(!'infixes);
val it = () : unit
get_precedence """;
val it = 30 : int

This setup is not purely functional, but is perhaps

more natural.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Finding if an operator is infix

We will treat an operator as infix just if it appears

in the list of infixes with a precedence. We can do:

- fun is_infix s =
(get_precedence s; true)
handle => false;

because get_precedence fails on non-infixes. An
alternative coding is to use an auxiliary function
can which finds out whether the application of its

first argument to its seconds succeeds::

fun can f x =

(f x; true)

handle _ => false;
val can = fn : (’a -> ’b) -> ’a -> bool
val is_infix can get_precedence;

val is_infix = fn : string -> bool

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

The printer: explanation

The printer consists of two mutually recursive

functions.

The function string_of_term takes two

arguments. The first is a ‘currently active
precedence’, and the second is the term.

For example, in printing the right-hand argument
of x * (y + z), the currently active precedence
is the precedence of *. If the function prints an
application of an infix operator (here +), it puts
brackets round it unless its own precedence is

higher.

We have a second, mutually recursive, function,
to print a list of terms separated by commas.
This is for the argument lists of non-unary and

non-infix functions of the form f(zy,...,x,).

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

The printer: code

- fun string_of_term prec =
fn (Var s) => s
| (Const c) => ¢
| (Fn(f,args)) =>

if length args = 2 andalso is_infix f then
let val prec’ = get_precedence f
val s1 = string_of_term prec’
(hd args)
val s2 = string_of_term prec’
(hd(t1l args))
val ss = s1°" "7f°" ""s2
in if prec’ <= prec then "(""ss"")"
else ss
end

else

f~"(""(string_of_terms args)~")"

and string_of_terms tms = case tms of
[] => "

| [t] => string_of_term O t

| (h::t) => (string_of_term O h)~","~

(string_of_terms t);

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

The printer: installing

Moscow ML has special facilities for installing

user-defined printers in the toplevel

read-eval-print loop.

Once our printer is installed, anything of type

term will be printed using it.

load "PP";
val it = () : unit
fun print_term pps s =
let open PP
in begin_block pps INCONSISTENT O;
add_string pps
(""" (string_of_term 0 s)~"‘");
end_block pps
end;
val print_term = fn :
ppstream -> term -> unit
installPP print_term;

val it = () : unit

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Before and after

[Fn ("sin", [Fn ("+", [Var "x", Var "y"1)1),
Fn ("cos", [Fn ("-", [Var "x", Fn ("exp",
[Var "y"1)1D1)1),
Fn ("1n", [Fn ("+", [Const "1", Var "x"1)1)1)
:term
installPP print_term;
val it = () : unit
t;
val it = ‘sin(x + y) / cos(x - exp(y)) - 1In(1 + x)
: term
val x t;
val x = ‘sin(x + y) / cos(x - exp(y)) - In(1 + x)°
: term
[x,t,x];
val it =
[‘sin(x + y) / cos(x - exp(y)) - 1In(1
‘sin(x + y) / cos(x - exp(y)) - 1In(1
‘sin(x + y) / cos(x - exp(y)) - 1In(1

: term list

John Harrison

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Differentiation: algorithm

There is a well-known method (taught in schools)

to differentiate complicated expressions.

e If the expression is one of the standard
functions applied to an argument, e.g. sin(z),

return the known derivative.

If the expression is of the form f(z) + g(x)
then apply the rule for sums, returning
f'(x) 4+ ¢'(x). Likewise for subtraction etc.

If the expression is of the form f(z) % g(x)
then apply the product rule, i.e. return

fl(@) * g(x) + f(2)* g'(x).

If the expression is one of the standard
functions applied to a composite argument,
say f(g(xz)) then apply the Chain Rule and so

give g'(z) x f'(g(x)).

This translates very easily into a recursive

computer algorithm.

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Differentiation: code

differentiate x =

Var y => if y = x then Const "1" else Const "O"

Const ¢ => Const "O"
Fn("-",[t]) => Fn("-",[differentiate x t])
Fn("+",[t1,t2]) => Fn("+",[differentiate x t1,
differentiate x t2])
Fn("-",[t1,t2]) => Fn("-",[differentiate x t1,
differentiate x t2])

Fn("x",[t1,t2]) =>

Fn("+", [Fn("x", [differentiate x t1, t2]),

Fn("x",[t1, differentiate x t2])])

Fn("inv",[t]) => chain x t

(Fn("-", [Fn("inv", [Fn(""",[t,Const "2"]1)1)1))
Fn(""",[t,n]) => chain x t

(Fn("x", [n, Fn(""",[t, Fn("-",[n, Const "1"])1)1))
(tm as Fn("exp",[t])) => chain x t tm
Fn("1n",[t]) => chain x t (Fn("inv", [t]))
Fn("sin",[t]) => chain x t (Fn("cos", [t]))
Fn("cos",[t]) => chain x t

(Fn("-",[Fn("sin", [t]1)]1))
Fn("/",[t1,t2]) => differentiate x

(Fn("*",[t1, Fn("inv",[t2])]1))
Fn("tan",[t]) => differentiate x

(Fn("/", [Fn("sin", [t]), Fn("cos",[t])]))
chain x t u = Fn("x",[differentiate x t, ul);

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Differentiation examples

Let’s try a few examples:

val t1 = ‘sin(2 * x)‘ : term
differentiate "x" t1;
val it = ‘(0 * x + 2 x 1) * cos(2 *x x)°¢
term
val t2 = Fn("tan", [Var "x"]);
val t2 = ‘tan(x)‘ : term
differentiate "x" t2;
val it =
‘(1 * cos(x)) * inv(cos(x)) +
sin(x) * ((1 * -(sin(x))) *
—(inv(cos(x) ~ 2)))° : term
differentiate "y" t2;
val it =
‘(0 * cos(x)) * inv(cos(x)) +
sin(x) * ((0 * -(sin(x))) *

-(inv(cos(x) ~ 2)))¢ : term

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Simplification

It seems to work OK, but it isn’t making certain

obvious simplifications, like 0 * x = 0. These arise
partly because we apply the recursive rules like
the chain rule even in trivial cases. We’ll write a
simplifier:

simp =

(Fn("+",[Const "O", t])) =>t

(Fn("+",[t, Const "0"])) => ¢t

(Fn("-",[t, Const "0"])) => t

(Fn("-", [Const "O", t])) => Fn("-",[t])

(Fn("+",[t1, Fn("-",[t2]1)1)) => Fn("-",[t1, t2])

(Fn("x",[Const "O", t])) => Const "O"

(Fn("x" ,[t, Const "0"])) => Const "O"

(Fn("*", [Const "1", t])) => t

(Fn("x",[t, Const "1"])) => ¢t

(Fn("*", [Fn("-",[t1]), Fn("-",[t2])]1)) =>
Fn("*",[t1, t2])

(Fn("*x", [Fn("-", [t1]), t2])) =>
Fn("-", [Fn("x",[t1, t2])1)

(Fn("x",[t1, Fn("-",[t2])])) =>
Fn("-",[Fn("*",[t1, t2]1)1)

(Fn("-", [Fn("-",[t]1)])) => t

t => t;

University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9

Simplification examples

We need to apply simp recursively, bottom-up:

- val rec dsimp =
fn (Fn(f,args)) =>
simp (Fn(f,map dsimp args))
| t => simp t;

Now we get better results:

dsimp(differentiate "x" t1);

val it = ‘2 * cos(2 * x)‘ : term

dsimp(differentiate "x" t2);

val it = ‘cos(x) * inv(cos(x)) +
sin(x) *
(sin(x) * inv(cos(x) ~ 2))°
: term

- dsimp(differentiate "y" t);

> val it = ‘0¢ : term

There are still other simplifications to be made,
e.g. cos(x) xinv(cos(x)) = 1. Good algebraic

simplification is a difficult problem!

University of Cambridge, 3 February 1998

