
Introduction to Functional Programming: Lecture 9 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 9ML examples I:Symbolic Di�erentiation

Topics covered:� Symbolic computation� Data representation� Prettyprinting� Di�erentiation� Simpli�cation by rewriting
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 2
Symbolic computation

This covers applications where manipulation ofmathematical expressions, in general containingvariables, is emphasized at the expense of actualnumerical calculation.There are several successful `computer algebrasystems' such as Axiom, Maple and Mathematica,which can do certain symbolic operations that areuseful in mathematics.Examples include factorizing polynomials anddi�erentiating and integrating expressions.We will show how ML can be used for suchapplications. Our example will be symbolicdi�erentiation.This will illustrate all the typical components ofsymbolic computation systems: datarepresentation, internal algorithms, parsing andprettyprinting.John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 3
Data representation

We will allow mathematical expressions to bebuilt up from variables and constants by theapplication of n-ary operators.Therefore we de�ne a recursive type as follows:- datatype term =Var of string| Const of string| Fn of string * (term list);For example the expressionsin(x+ y)=cos(x� exp(y))� ln(1 + x) isrepresented by:Fn("-",[Fn("/",[Fn("sin",[Fn("+",[Var "x",Var "y"])]),Fn("cos",[Fn("-",[Var "x",Fn("exp",[Var "y"])])])]),Fn("ln",[Fn("+",[Const "1", Var "x"])])]);John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 4
The need for parsing and printing

Reading and writing expressions in their raw formis rather unpleasant. This is a general problem inall symbolic computation systems. Typically onewants:� A parser to accept input in human-readableform and translate it into the internalrepresentation� A prettyprinter to translate output from theinternal representation back to ahuman-readable form.We will use parsing as another major example offunctional programming, so we will defer that fornow.However we will now write a simple printer forour expressions.
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 5
Prettyprinting expressions

How do we want to print expressions?� Variables and constants are just written astheir names.� Ordinary n-ary functions applied toarguments are written by juxtaposing thefunction and a bracketed list of arguments,e.g. f(x1; : : : ; xn).� In�x binary functions like + are written inbetween their arguments.� Brackets are used where necessary fordisambiguation.� In�x operators have a notion of precedence toreduce the need for brackets.
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 6
Storing precedences

We can have a list of binary operators togetherwith their precedences, e.g.- val infixes = [("+",10), ("-",10),("*",20), ("/",20)];This sort of list, associating data with keys, iscalled an association list. To get the dataassociated with a key we use the following:- fun assoc a ((x,y)::rest) =if a = x then y else assoc a rest;In our case, we de�ne:- fun get_precedence s = assoc s infixes;This procedure of linear search is ine�cient, butit is simple and adequate for small examples.Techniques like hashing are better forheavyweight applications.
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 7
Making precedences modi�ableBecause of static binding, changing the list ofin�xes does not change get precedence.However we can make infixes a referenceinstead and then it is modi�able:- val infixes = ref [("+",10), ("-",10),("*",20), ("/",20)];...- fun get_precedence s =assoc s (!infixes);> val get_precedence = fn : string -> int- get_precedence "^";! Uncaught exception:! Match- infixes := ("^",30)::(!infixes);> val it = () : unit- get_precedence "^";> val it = 30 : intThis setup is not purely functional, but is perhapsmore natural.John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 8
Finding if an operator is in�x

We will treat an operator as in�x just if it appearsin the list of in�xes with a precedence. We can do:- fun is_infix s =(get_precedence s; true)handle _ => false;because get_precedence fails on non-in�xes. Analternative coding is to use an auxiliary functioncan which �nds out whether the application of its�rst argument to its seconds succeeds::- fun can f x =(f x; true)handle _ => false;> val can = fn : ('a -> 'b) -> 'a -> bool- val is_infix = can get_precedence;> val is_infix = fn : string -> bool
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 9
The printer: explanation

The printer consists of two mutually recursivefunctions.The function string_of_term takes twoarguments. The �rst is a `currently activeprecedence', and the second is the term.For example, in printing the right-hand argumentof x * (y + z), the currently active precedenceis the precedence of *. If the function prints anapplication of an in�x operator (here +), it putsbrackets round it unless its own precedence ishigher.We have a second, mutually recursive, function,to print a list of terms separated by commas.This is for the argument lists of non-unary andnon-in�x functions of the form f(x1; : : : ; xn).
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 10
The printer: code

- fun string_of_term prec =fn (Var s) => s| (Const c) => c| (Fn(f,args)) =>if length args = 2 andalso is_infix f thenlet val prec' = get_precedence fval s1 = string_of_term prec'(hd args)val s2 = string_of_term prec'(hd(tl args))val ss = s1^" "^f^" "^s2in if prec' <= prec then "("^ss^")"else ssendelsef^"("^(string_of_terms args)^")"and string_of_terms tms = case tms of[] => ""| [t] => string_of_term 0 t| (h::t) => (string_of_term 0 h)^","^(string_of_terms t);
John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 11
The printer: installingMoscow ML has special facilities for installinguser-de�ned printers in the toplevelread-eval-print loop.Once our printer is installed, anything of typeterm will be printed using it.- load "PP";> val it = () : unit- fun print_term pps s =let open PPin begin_block pps INCONSISTENT 0;add_string pps("`"^(string_of_term 0 s)^"`");end_block ppsend;> val print_term = fn :ppstream -> term -> unit- installPP print_term;> val it = () : unit

John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 12
Before and after- t;> val it = Fn("-",[Fn("/",[Fn ("sin", [Fn ("+", [Var "x", Var "y"])]),Fn ("cos", [Fn ("-", [Var "x", Fn ("exp",[Var "y"])])])]),Fn ("ln", [Fn ("+", [Const "1", Var "x"])])]):term- installPP print_term;> val it = () : unit- t;> val it = `sin(x + y) / cos(x - exp(y)) - ln(1 + x)`: term- val x = t;> val x = `sin(x + y) / cos(x - exp(y)) - ln(1 + x)`: term- [x,t,x];> val it =[`sin(x + y) / cos(x - exp(y)) - ln(1 + x)`,`sin(x + y) / cos(x - exp(y)) - ln(1 + x)`,`sin(x + y) / cos(x - exp(y)) - ln(1 + x)`]: term listJohn Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 13
Di�erentiation: algorithmThere is a well-known method (taught in schools)to di�erentiate complicated expressions.� If the expression is one of the standardfunctions applied to an argument, e.g. sin(x),return the known derivative.� If the expression is of the form f(x) + g(x)then apply the rule for sums, returningf 0(x) + g0(x). Likewise for subtraction etc.� If the expression is of the form f(x) � g(x)then apply the product rule, i.e. returnf 0(x) � g(x) + f(x) � g0(x).� If the expression is one of the standardfunctions applied to a composite argument,say f(g(x)) then apply the Chain Rule and sogive g0(x) � f 0(g(x)).This translates very easily into a recursivecomputer algorithm.John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 14
Di�erentiation: codefun differentiate x =fn Var y => if y = x then Const "1" else Const "0"| Const c => Const "0"| Fn("-",[t]) => Fn("-",[differentiate x t])| Fn("+",[t1,t2]) => Fn("+",[differentiate x t1,differentiate x t2])| Fn("-",[t1,t2]) => Fn("-",[differentiate x t1,differentiate x t2])| Fn("*",[t1,t2]) =>Fn("+",[Fn("*",[differentiate x t1, t2]),Fn("*",[t1, differentiate x t2])])| Fn("inv",[t]) => chain x t(Fn("-",[Fn("inv",[Fn("^",[t,Const "2"])])]))| Fn("^",[t,n]) => chain x t(Fn("*",[n, Fn("^",[t, Fn("-",[n, Const "1"])])]))| (tm as Fn("exp",[t])) => chain x t tm| Fn("ln",[t]) => chain x t (Fn("inv",[t]))| Fn("sin",[t]) => chain x t (Fn("cos",[t]))| Fn("cos",[t]) => chain x t(Fn("-",[Fn("sin",[t])]))| Fn("/",[t1,t2]) => differentiate x(Fn("*",[t1, Fn("inv",[t2])]))| Fn("tan",[t]) => differentiate x(Fn("/",[Fn("sin",[t]), Fn("cos",[t])]))and chain x t u = Fn("*",[differentiate x t, u]);John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 15
Di�erentiation examplesLet's try a few examples:> val t1 = `sin(2 * x)` : term- differentiate "x" t1;> val it = `(0 * x + 2 * 1) * cos(2 * x)`: term- val t2 = Fn("tan",[Var "x"]);> val t2 = `tan(x)` : term- differentiate "x" t2;> val it =`(1 * cos(x)) * inv(cos(x)) +sin(x) * ((1 * -(sin(x))) *-(inv(cos(x) ^ 2)))` : term- differentiate "y" t2;> val it =`(0 * cos(x)) * inv(cos(x)) +sin(x) * ((0 * -(sin(x))) *-(inv(cos(x) ^ 2)))` : term

John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 16
Simpli�cationIt seems to work OK, but it isn't making certainobvious simpli�cations, like 0 � x = 0. These arisepartly because we apply the recursive rules likethe chain rule even in trivial cases. We'll write asimpli�er:- val simp =fn (Fn("+",[Const "0", t])) => t| (Fn("+",[t, Const "0"])) => t| (Fn("-",[t, Const "0"])) => t| (Fn("-",[Const "0", t])) => Fn("-",[t])| (Fn("+",[t1, Fn("-",[t2])])) => Fn("-",[t1, t2])| (Fn("*",[Const "0", t])) => Const "0"| (Fn("*",[t, Const "0"])) => Const "0"| (Fn("*",[Const "1", t])) => t| (Fn("*",[t, Const "1"])) => t| (Fn("*",[Fn("-",[t1]), Fn("-",[t2])])) =>Fn("*",[t1, t2])| (Fn("*",[Fn("-",[t1]), t2])) =>Fn("-",[Fn("*",[t1, t2])])| (Fn("*",[t1, Fn("-",[t2])])) =>Fn("-",[Fn("*",[t1, t2])])| (Fn("-",[Fn("-",[t])])) => t| t => t;John Harrison University of Cambridge, 3 February 1998

Introduction to Functional Programming: Lecture 9 17
Simpli�cation examplesWe need to apply simp recursively, bottom-up:- val rec dsimp =fn (Fn(f,args)) =>simp(Fn(f,map dsimp args))| t => simp t;Now we get better results:- dsimp(differentiate "x" t1);> val it = `2 * cos(2 * x)` : term- dsimp(differentiate "x" t2);> val it = `cos(x) * inv(cos(x)) +sin(x) *(sin(x) * inv(cos(x) ^ 2))`: term- dsimp(differentiate "y" t);> val it = `0` : termThere are still other simpli�cations to be made,e.g. cos(x) � inv(cos(x)) = 1. Good algebraicsimpli�cation is a di�cult problem!John Harrison University of Cambridge, 3 February 1998

