
Introduction to Functional Programming: Lecture 7 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 7In�nite data structures

Topics covered:� Functions as in�nite data structures� Real numbers as approximating functions� Streams� Examples: primes, Hamming's problem
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 2
Functions as in�nite data structures

Ordinary ML data structures are always �nite.We can, however, regard a function out of anin�nite type as being, at least potentially, in�nite.In a sense it is still �nite, because the function isstill determined by its de�nition, i.e. a �nite rule.So its `information content' is still �nite.But for most purposes we can think of functionsas representing a potentially in�nite datastructure.This is quite convenient in many situations.We'll examine two in more depth.

John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 3
Real numbers

Real arithmetic on computers is normally donevia
oating point approximations.In general, we can only manipulate a real number,either ourselves or inside a computer, via somesort of �nite representation.Some question how numbers can be said to `exist'if they have no �nite representation.For example, Kronecker accepted integers andrationals because they can be written downexplicitly, and even algebraic numbers becausethey can be represented using the polynomials ofwhich they are solutions.However he rejected transcendental numbersbecause apparently they could not be represented�nitely.
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 4
Real numbers as programs

However, given our modern perspective, we cansay that after all many more numbers thanKronecker would have accepted do have a �niterepresentation.This is the program used to calculate them togreater and greater precision.For example, we can write a program that willproduce for any argument n the �rst n digits of �.Alternatively it can produce a rational number rsuch that j� � rj < 2�n.Whatever approach is taken to the successiveapproximation of a real number, the key point isthat its representation, the program itself, is�nite.
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 5
Our representation of reals

We represent a real x by a function fx : N ! Zthat for each n 2 N :jfx(n)� 2nxj < 1This is of course equivalent tojfx(n)2n � xj < 12nWe can actually represent the arithmeticoperations on numbers as higher order functions.Given functions for approximating x and y, willproduce new ones for approximating x+ y, xy,sin(x) and so on, for a wide range of functions.Such a result is exact, in the sense that we canthen give it an arbitrary desired precision and itwill perform the appropriate calculationautomatically.
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 6
Getting started

Recall that our real numbers are supposed to be(represented by) functions Z ! Z .In ML we will actually use int -> int, but reallywe should use a type of in�nite-precision numbers.Now we can de�ne some basic operations on reals.The most basic operation, which gets us started,is to produce the real number corresponding to aninteger. We'll use our earlier function exp x n toraise x to the power n.- fun real_of_int k n =(exp 2 n) * k;> val real_of_int = fn : int -> int -> int- real_of_int 23;> val it = fn : int -> intEvidently this satis�es the error criterion: in factthe error is zero.
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 7
Basic operations

Now we can de�ne the �rst nontrivial operation,that of unary negation:fun real_neg f n = ~(f n);The compiler generalizes the type more thanintended, but this will not trouble us. It is almostas easy to see that the approximation criterion ispreserved. If we know that for each n:jfx(n)� 2nxj < 1then we have for any n:jf�x(n)� 2n(�x)j = j � fx(n)� 2n(�x)j= j � (fx(n)� 2nx)j= jfx(n)� 2nxj< 1Similarly, we can de�ne an `absolute value'function on real numbers, using the correspondingfunction abs on integers.John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 8
Addition: �rst attempt

We could de�ne:
fx+y(n) = fx(n) + fy(n)

However this gives no guarantee that theapproximation criterion is maintained; we wouldhave:
jfx+y(n)� 2n(x+ y)j= jfx(n) + fy(n)� 2n(x+ y)j� jfx(n)� 2nxj+ jfy(n)� 2nyj

We can guarantee that the sum on the right is lessthan 2, but not that it is less than 1 as required.Therefore, we need in this case to evaluate x andy to greater accuracy than required in the answer.John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 9
Addition: second attempt

Suppose we de�ne:fx+y(n) = (fx(n+ 1) + fy(n+ 1))=2Now we have:jfx+y(n)� 2n(x+ y)j= j(fx(n+ 1) + fy(n+ 1))=2� 2n(x+ y)j� jfx(n+ 1)=2� 2nxj+ jfy(n+ 1)=2� 2nyj= 12 jfx(n+ 1)� 2n+1xj+ 12 jfy(n+ 1)� 2n+1yj< 121 + 121 = 1
Apparently this just gives the accuracy required.However we have implicitly used realmathematical division above. Since the functionis supposed to yield an integer, we are obliged toround the quotient to an integer.John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 10
Rounding divisionIf we just use div, the error from rounding thismight be almost 1, after which we could neverguarantee the bound we want, however accuratelywe evaluate the arguments.We need a division function that always returnsthe integer closest to the true result (or one ofthem in the case of two equally close ones), sothat the rounding error never exceeds 12 .fun pdiv x y =if 2 * abs(x mod y) <= abs(y)then x mod y else x mod y + 1;fun ndiv x y =let val q = pdiv (abs x) (abs y)in if x * y < 0 then ~q else qend;Now we are ready to de�ne a correct additionfunction!John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 11
Addition: third attempt

Now if we de�ne:fx+y(n) = (fx(n+ 2) + fy(n+ 2)) ndiv 4everything works:jfx+y(n)� 2n(x+ y)j= j((fx(n+ 2) + fy(n+ 2)) ndiv 4)� 2n(x+ y)j� 12 + j(fx(n+ 2) + fy(n+ 2))=4� 2n(x+ y)j= 12 + 14 j(fx(n+ 2) + fy(n+ 2))� 2n+2(x+ y)j� 12 + 14 jfx(n+ 2)� 2n+2xj+14 jfy(n+ 2)� 2n+2yj< 12 + 141 + 141 = 1Accordingly we make our de�nition:fun real_add f g n =ndiv (f(n + 2) + g(n + 2)) 4;John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 12
Streams

We can use functions to represent in�nite datastructures in a somewhat di�erent way, which hasmore in common with �nite lists.Consider the following datatype for streams, i.e.�nite or in�nite lists.datatype ('a)stream =Nil| Cons of 'a * (unit -> ('a) stream);Crudely speaking, a list is represented recursivelyas: the nth element together with a function that,when called, returns the rest of the list (fromelement n+ 1 onwards).Although the list is potentially in�nite, we onlyever evaluate it as far as we need. This explainsthe alternative name for streams of lazy lists.They are also often called sequences.
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 13
Generating in�nite streams

How can we generate an in�nite stream? Simplywith a recursive function. For example, the list ofnumbers
n; n+ 1; n+ 2; : : :

can be created by- fun from n =Cons(n, fn () => from(n + 1));> val from = fn : int -> int streamNote that because of the evaluation rules, a callfrom k won't loop inde�nitely, because nothing isevaluated under the fn () => We mustn'tuse:fun cons h t = Cons(h, fn () => t);fun from n = cons n (from(n + 1));John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 14
Stream operationsWe can de�ne some list operations in essentiallythe same way as for �nite lists, e.g.fun el 0 (Cons(h,t)) = h| el n (Cons(h,t)) = el (n-1) (t());fun first 0 l = []| first n (Cons(h,t)) =h::(first (n-1) (t()));Here is a de�nition analogous to map:- fun maps f Nil = Nil| maps f (Cons(h,t)) =Cons(f h,fn () => maps f (t()));> val maps = fn : ('a -> 'b) ->'a stream -> 'b stream- el 3 (maps (fn n => 2 * n) (from 1));> val it = 8 : int

John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 15
Filtering

We can also de�ne a �ltering operation onstreams:fun filters P Nil = Nil| filters P (Cons(h,t)) =if P h thenCons(h,fn () => filters P (t()))else filters P (t());This will normally terminate, but not of course ifthere isn't anything satisfying the predicate:- filters (fn x => x mod 2 = 1) (from 1);> val it = Cons(1, fn) : int stream- first 5 it;> val it = [1, 3, 5, 7, 9] : int list- filters (fn x => x mod 2 = 1)(maps (fn n => 2 * n) (from 1));
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 16
Example: primesWe can now generate the stream of all primenumbers:fun genprimes (Cons(h,t)) =Cons(h,fn () =>genprimes(filters(fn x => x mod h <> 0)(t())));This takes the head of the list, �lters all multiplesof the head out of the tail, and then callsrecursively on the �ltered tail.val primes = genprimes (from 2);This does indeed give the sequence of all primes,e.g.- first 15 primes;> val it = [2, 3, 5, 7, 11, 13, 17, 19,23, 29, 31, 37, 41, 43, 47]: int listJohn Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 17
The Hamming Problem (1)

The following function merges two orderedstreams into another ordered stream:fun merge Nil l2 = l2| merge l1 Nil = l1| merge (l1 as Cons(h1,t1))(l2 as Cons(h2,t2)) =if h1 < h2then Cons(h1,fn () =>merge (t1()) l2)else Cons(h2,fn () =>merge l1 (t2()));We can use this to solve a problem attributed toHamming: generate all numbers of the form2a3b5c in numerical order.val p2 = maps (fn n => exp 2 n) (from 0);val p3 = maps (fn n => exp 3 n) (from 0);val p5 = maps (fn n => exp 5 n) (from 0);
John Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 18
The Hamming Problem (2)We need to take all products from two streams:fun prod (l1 as Cons(h1,t1))(l2 as Cons(h2,t2)) =Cons(h1 * h2, fn () =>let val r1 = t1()val r2 = t2()in merge(maps (fn x => h2 * x) r1)(merge (maps (fn x => h1 * x) r2)(prod r1 r2))end);Now we just solve the Hamming problem by:- val hamming = prod p2 (prod p3 p5);> val hamming = Cons(1, fn) : int stream- first 25 hamming;> val it = [1, 2, 3, 4, 5, 6, 8, 9, 10,12, 15, 16, 18, 20, 24, 25, 27, 30,32, 36] : int listJohn Harrison University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7 19
E�ciency

While it's sometimes very convenient to play within�nite data structures this way, it can be veryhard to visualize what goes on inside the machine,and when.Essentially, we are doing lazy functionalprogramming in ML, so our usual intuitions (evenif we have any) can fail us.A simple mistake can sometimes make a functionfail to work. In any case, such functions are oftenine�cient, sometimes for subtle reasons.For example, recalculation of the same result canblow up exponentially over multiple functioncalls. An implementation of multiplication in thereals will have this problem unless we take specialmeasures.
John Harrison University of Cambridge, 29 January 1998

