Introduction to Functional Programming: Lecture 7

Introduction to
Functional Programming

Topics covered:

e [Functions as infinite data structures
e Real numbers as approximating functions

e Streams

e Examples: primes, Hamming’s problem

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Functions as infinite data structures

Ordinary ML data structures are always finite.

We can, however, regard a function out of an

infinite type as being, at least potentially, infinite.

In a sense it is still finite, because the function is
still determined by its definition, i.e. a finite rule.

So its ‘information content’ is still finite.

But for most purposes we can think of functions
as representing a potentially infinite data

structure.
This is quite convenient in many situations.

We'll examine two in more depth.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Real arithmetic on computers is normally done

via floating point approximations.

In general, we can only manipulate a real number,
either ourselves or inside a computer, via some

sort of finite representation.

Some question how numbers can be said to ‘exist’

if they have no finite representation.

For example, Kronecker accepted integers and
rationals because they can be written down
explicitly, and even algebraic numbers because
they can be represented using the polynomials of

which they are solutions.

However he rejected transcendental numbers
because apparently they could not be represented

finitely.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Real numbers as programs

However, given our modern perspective, we can

say that after all many more numbers than
Kronecker would have accepted do have a finite

representation.

This is the program used to calculate them to

greater and greater precision.

For example, we can write a program that will

produce for any argument n the first n digits of .

Alternatively it can produce a rational number r
such that |7 —r| < 27"

Whatever approach is taken to the successive
approximation of a real number, the key point is
that its representation, the program itself, is
finite.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Our representation of reals

We represent a real z by a function f, : N — Z
that for each n € N:

fz(n) —2"z| < 1

This is of course equivalent to

We can actually represent the arithmetic

operations on numbers as higher order functions.

Given functions for approximating z and y, will
produce new ones for approximating = + y, xy,

sin(x) and so on, for a wide range of functions.

Such a result is exact, in the sense that we can
then give it an arbitrary desired precision and it
will perform the appropriate calculation
automatically.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Getting started

Recall that our real numbers are supposed to be

(represented by) functions Z — Z.

In ML we will actually use int -> int, but really
we should use a type of infinite-precision numbers.

Now we can define some basic operations on reals.
The most basic operation, which gets us started,

is to produce the real number corresponding to an
integer. We’ll use our earlier function exp x n to

raise x to the power n.

fun real_of_int k n =

(exp 2 n) * k;
val real_of_int = fn : int -> int -> in
real_of_int 23;

val it = fn : int -> int

Evidently this satisfies the error criterion: in fact

the error is zero.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Basic operations

Now we can define the first nontrivial operation,
that of unary negation:

fun real_neg f n = “(f n);

The compiler generalizes the type more than
intended, but this will not trouble us. It is almost
as easy to see that the approximation criterion is
preserved. If we know that for each n:

fz(n) —2"x| < 1
then we have for any n:

|f—a(n) — 2" (—2)| — fa(n) — 2" (—x)
— (fa(n) —2"x)
fz(n) — 2"z

1

Similarly, we can define an ‘absolute value’
function on real numbers, using the corresponding

function abs on integers.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Addition: first attempt

We could define:

f:c—I—y(n) — fa:(n) + fy(n)

However this gives no guarantee that the
approximation criterion is maintained; we would

have:

foty(n) = 2%(z +y)|
fe(n) + fy(n) = 2"(z + y)|
fe(n) = 2"z| + [fy(n) = 2"y|

We can guarantee that the sum on the right is less
than 2, but not that it is less than 1 as required.
Therefore, we need in this case to evaluate x and

y to greater accuracy than required in the answer.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Addition: second attempt

Suppose we define:

fory(n) = (fe(n +1) + fy(n +1))/2

Now we have:

faty(n) = 2"(z +y)
(fa(n+1) + fy(n+1))/2 = 2"(x + y)
fa(n+1)/2 = 2%z + | fy(n +1)/2 = 2%y

1 n 1 n
§\fx(n—|—1) —2 +1x\ + i\fy(n—l—l) —2 +1y\

11+11—1
27 97

Apparently this just gives the accuracy required.
However we have implicitly used real

mathematical division above. Since the function
is supposed to yield an integer, we are obliged to

round the quotient to an integer.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Rounding division

If we just use div, the error from rounding this
might be almost 1, after which we could never
guarantee the bound we want, however accurately

we evaluate the arguments.

We need a division function that always returns

the integer closest to the true result (or one of

them in the case of two equally close ones), so

that the rounding error never exceeds %

fun pdiv x y =
if 2 * abs(x mod y) <= abs(y)

then x mod y else x mod y + 1;

fun ndiv x y =
let val q = pdiv (abs x) (abs y)
in if x * y < O then "q else q

end ;

Now we are ready to define a correct addition

function!

University of Cambridge, 29 January 1998

John Harrison

Introduction to Functional Programming: Lecture 7

Addition: third attempt

Now if we define:

Fory(m) = (fo(n+2) + f,(n +2)) ndiv 4

everything works:

fory(n) —2"(z +y)
((fa(n+2) + fy(n +2)) ndiv 4) —2"(z + y)|

1+ [(fe(n+2)+ fy(n+2))/4—2"(z+y)|

+ 2 1(fa(n +2) + fy(n +2)) = 2" (z +y)

) 2n+2

1
Ty

1

+ 1 faln +2) — 270 +
fy(n + Y|
1

2
1
2
1
2
If
4

! + -1+ . 1=1

2 45 4
Accordingly we make our definition:

fun real_add f g n =
ndiv (f(n + 2) + g(n + 2)) 4;

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

We can use functions to represent infinite data

structures in a somewhat different way, which has

more in common with finite lists.

Consider the following datatype for streams, i.e.
finite or infinite lists.

datatype (’a)stream =
Nil
| Cons of ’a * (unit -> (’a) stream);
Crudely speaking, a list is represented recursively
as: the n'™ element together with a function that,

when called, returns the rest of the list (from
element n + 1 onwards).

Although the list is potentially infinite, we only
ever evaluate it as far as we need. This explains
the alternative name for streams of lazy lists.

They are also often called sequences.

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Generating infinite streams

How can we generate an infinite stream? Simply

with a recursive function. For example, the list of

numbers

nn+1l,n+2, ...

can be created by

- fun from n =
Cons(n, fn () => from(n + 1));

> val from = fn : int -> int stream

Note that because of the evaluation rules, a call
from k won’t loop indefinitely, because nothing is
evaluated under the fn () => We mustn’t

use:

fun cons h t = Cons(h, fn () => t);

fun from n = cons n (from(n + 1));

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Stream operations

We can define some list operations in essentially

the same way as for finite lists, e.g.

fun el 0 (Cons(h,t)) =h
| el n (Cons(h,t)) = el (n-1) (t0O);

fun first 0 1 = []
| first n (Cons(h,t)) =
h::(first (n-1) (0)));

Here is a definition analogous to map:

- fun maps f Nil = Nil
| maps f (Cons(h,t)) =
Cons(f h,fn () => maps f (£t()));
val maps = fn : (’a -> ’b) ->
’a stream -> ’b stream
el 3 (maps (fn n => 2 * n) (from 1));

val it = 8 : int

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Filtering

We can also define a filtering operation on

streams:

fun filters P Nil = Nil
| filters P (Cons(h,t)) =
if P h then
Cons(h,fn () => filters P (t()))
else filters P (t());

This will normally terminate, but not of course if
there isn’t anything satisfying the predicate:

filters (fn x => x mod 2 = 1) (from 1);
val it = Cons(l, fn) : int stream
first 5 1it;
val it = [1, 3, 5, 7, 9] : int list
filters (fn x => x mod 2 = 1)

(maps (fn n => 2 * n) (from 1));

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

Example: primes

We can now generate the stream of all prime

numbers:

fun genprimes (Cons(h,t)) =

Cons(h,fn () =>
genprimes
(filters
(fn x => x mod h <> 0)
(t())));

This takes the head of the list, filters all multiples
of the head out of the tail, and then calls

recursively on the filtered tail.

val primes = genprimes (from 2);
This does indeed give the sequence of all primes,
e.g.

- first 15 primes;

> val it = [2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47]
int list

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

The Hamming Problem (1)

The following function merges two ordered

streams into another ordered stream:

fun merge Nil 12 = 12
| merge 11 Nil = 11
| merge (11 as Cons(hl,t1))
(12 as Cons(h2,t2)) =
if hl < h2
then Cons(hl,fn () =>
merge (t1()) 12)
else Cons(h2,fn () =>
merge 11 (t2()));

We can use this to solve a problem attributed to
Hamming: generate all numbers of the form

22¢3b5¢ in numerical order.

val p2 = maps (fn n => exp 2 n) (from 0);
val p3 = maps (fn n => exp 3 n) (from 0);
val pb = maps (fn n => exp 5 n) (from 0);

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

The Hamming Problem (2)

We need to take all products from two streams:

fun prod (11 as Cons(hl,t1))
(12 as Cons(h2,t2)) =
Cons(hl * h2, fn () =>
let val r1 = t10)
val r2 = t2()
in merge
(maps (fn x => h2 * x) ril)

(merge (maps (fn x => hl * x) r2)
(prod rl r2))
end) ;

Now we just solve the Hamming problem by:

val hamming = prod p2 (prod p3 p5);

val hamming = Cons(1l, fn) : int stream

first 25 hamming;

val it = [1, 2, 3, 4, 5, 6, 8, 9, 10,
12, 15, 16, 18, 20, 24, 25, 27, 30,
32, 36] : int 1list

University of Cambridge, 29 January 1998

Introduction to Functional Programming: Lecture 7

While it’s sometimes very convenient to play with
infinite data structures this way, it can be very
hard to visualize what goes on inside the machine,

and when.

Essentially, we are doing [azy functional

programming in ML, so our usual intuitions (even

if we have any) can fail us.

A simple mistake can sometimes make a function
fail to work. In any case, such functions are often

inefficient, sometimes for subtle reasons.

For example, recalculation of the same result can
blow up exponentially over multiple function

calls. An implementation of multiplication in the
reals will have this problem unless we take special

Imeasures.

University of Cambridge, 29 January 1998

