Introduction to Functional Programming: Lecture 3

Introduction to
Functional Programming

Topics covered:

e Why types?

e Approaches to typing
Basic types.
Polymorphism.

ML typechecking.

Equality types

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Logical reasons for types

Types help us rule out certain programs that

don’t seem to make sense.

Is it reasonable to apply a function to itself, as in
f £7 It makes some sense for functions like the

identity fn x => x or constant functions fn x =>

y. But in general it looks very suspicious.

This sort of self-application can lead to
inconsistencies in formal logics designed to
provide a foundation for mathematics.

For example, Russell’s paradox considers
{x | x & x}, the set of all sets that are not
members of themselves. To avoid this, Russell

introduced a system of types.

Type theory is now seen as an alternative to set
theory as a foundation. There are interesting

links between type theory and programming.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Programming reasons for types

Types were introduced in programming for a

mixture of reasons. We can (at least in

retrospect) see the following advantages:

e They can help the computer to generate more
efficient code, and use space more effectively.

e They serve as a kind of ‘sanity check’ for
programs, catching a lot of programming

errors before execution.
e They can serve as documentation for people.

e They can help with data hiding and

modularization.

At the same time, some programmers find them
an irksome restriction. How can we achieve the

best balance?

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Different typing methods

We can distinguish between

e Strong typing, as in Modula-3, where types
must match up exactly.

e Weak typing, as in C, where greater latitude
is allowed (e.g. an argument of type int to a

function expecting a float).

and also between

e Static typing, as in FORTRAN, which

happens during compilation

e Dynamic typing, as in LISP, which happens
during execution.

ML is statically and strongly typed. At the same
time, a feature called polymorphism gives many

benefits of weak or dynamic typing.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Basic types

The primitive types in ML include:

Type unit, a 1-element type, whose only

element 1s written ().

Type bool, a 2-element type whose elements

are written true and false.

Type int, a subset of the positive and
negative integers, e.g. 6 and “11.

Type real, floating point numbers, written
e.g. 1.0 and 3.1415926.

Type string, which corresponds to sequences

of characters, written "like this".

These can be put together using type
constructors, including the function constructor

-> and the Cartesian product constructor *.

We will see how to define new types and type

constructors later.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Polymorphism

Some functions can have various different types

— polymorphism. We distinguish between:

o True (‘parametric’) polymorphism, where all

the possible types for an expression are
instances of some schematic type, and all
instances of that schema are possible types.
For example, fn x => x can have any type of
the form a->a, e.g. int -> int or bool ->
bool but not int -> real.

Ad hoc polymorphism, or overloading, where
this isn’t so. The addition operation in fn x
=> 1 + xand fn x => 1.0 + x has types
int * int -> int and real * real ->
real respectively, but it can’t have type bool
* bool -> bool.

ML has overloading, but only for a few special
cases, and we prefer to ignore it. We’ll

concentrate on (parametric) polymorphism.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Type variables

In order to express polymorphism, ML allows
types to contain type variables. These are written
’a, ’b etc., ASCII approximations to a and 5.

If an expression has a type involving « then it can

also be given any type that results from

consistently replacing a by another type (which

may itself involve type variables).

Let’s say that a type o is more general than T,
and write o < 7, when we can substitute types for

type variables in o and get 7. For example:

bool
Q
(int — int)
(int — bool)
(8 = B)

0%

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Most general types

Every expression in ML that has a type has a
most general type. This was first proved in a

similar context by Hindley, and for the exact

setup here by Milner.

What’s more, there is an algorithm for finding the

most general type of any expression, even if it
contains no type information at all.

ML implementations use this algorithm.
Therefore it is never necessary in ML to write
down a type. All typing is implicit.

Thus, the ML type system is much less irksome
than in many languages like Modula-3. We never
have to specify types explicitly and we can often
re-use the same code with different types: the

compiler will work everything out for us.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

ML type inference (1)

Roughly speaking, here’s how ML’s type inference

works. Using this method you can typecheck ML

expressions yourself, though it’s rather laborious
and with some experience it becomes much easier.

We'll use as an example:
fna=> (fn f => fn x => f x) (fn x => x)

First, attach distinct type variables to distinct
variables in the expression, and the appropriate
types to previously defined constants, perhaps
themselves polymorphic. Different type variables
must be used for distinct instances of

polymorphic constants.

Note that variables like x in fn x => have a
limited scope, and outside that scope instances of
x are really separate variables. We get fn (a:a)
=> (fn (£:0) => fn (x:v) => (£f:08) (x:7v))
(fn (x:90) => (x:0)).

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

ML type inference (2)

Now an application of a function to an argument

f x can only be well-typed if f:0 - 7and z: 0o

for some ¢ and 7. In this case, (f x) : 7.

An expression fn (x:(3) => E:~ has type 8 — 7.

Using these facts, we can find relations among the
type variables. Essentially, we get a series of
simultaneous equations, and use them to
eliminate some unknowns. The remaining
unknowns, if any, parametrize the final

polymorphic type.

If the types can’t be matched up, or some type
variable has to be equal to some composite type
containing itself, then typechecking fails.

Another way of looking at it is as a case of

unification.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

ML type inference (3)

First, we have an application (£f:3) (x:7v). For
this to be well-typed, we must have, for some ¢
that 8 =~ — €. Now

(fn £ => fn x => f x):(y =2 €) = (v =€)

and this is applied to
(fn x => x):0 = 0

So we must have (y - €)= (0 = ) andsoy=4
and € = 0, and the whole expression has type
a— (0 —6).

It doesn’t matter how we name the type variables
now, so we can call it a = (6 — ).

This is the end result of type checking.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Let polymorphism

Recall that we can have local bindings, e.g. using
let val v = E in E’ end. We need to say how
to typecheck this.

We can regard it as synonymous with (fn v =>

E’) E, but then following the previous rules fails

to give one very important property:

If v is bound to something polymorphic, we want
to allow it to be instantiated to multiple instances

inside, e.g.

let val I = fn x => X
in if I true then I 1 else O

end;

One can typecheck such expressions simply by
substituting its definition for the bound variable.
This is not very eflicient, but is satisfactory in
principle. Of course, one must also check that the
bound expression is itself well-typed, in case it

isn’t used in the body.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Type preservation

In ML, the phases of type checking and evaluation
are separate, the former completed ‘statically’

before evaluation begins.

For this to work, it’s essential that evaluation of

well-typed expressions cannot give rise to

ill-typed expressions, i.e. that (static) typing and

(dynamic) evaluation don’t interfere with each

other. This property is called type preservation.

The main step in evaluation is the transition from
(fn x => t[x]) uto t[ul. It’s not hard to see,
following our rules, that x and u must have the
same types at the outset, so this preserves

typeability.

The reverse is not true, e.g. (fn a => fn b =>
b) (fn x => x x) is untypeable even though fn
b => Db is typeable.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Pathologies of typechecking

In all our examples, the system very quickly infers
a most general type for each expression, and the

type is simple. This usually happens in practice,

but there are pathological cases, e.g. the following

example due to Mairson:

fn a => let fun pair x y = fn z => z x y
val x1 fn pair y y
val x2 = fn x1(x1 y)
val x3 = fn x2(x2 y)
val x4 = fn x3(x3 y)
val x5 = fn x4 (x4 y)
in x5 (fn z => z)

end;

The type of this expression takes about a minute
to calculate, and when printed out takes 50,000

lines.

Don’t try this at home.

University of Cambridge, 20 January 1998




Introduction to Functional Programming: Lecture 3

Equality types

Sometimes one sees instead of ’a a type variable

>?a. These sometimes arise when using the

built-in equality operation inside an expression.

Equality is not completely polymorphic: one
cannot compare functions, or expressions built up

from functions.

While this might seem to go against the
functional programming philosophy, extensional
equality of functions is not computable. The type

system is used to reflect this.

- (fn x => x) = (fn x => x);
Toplevel input:
(fn x => x) = (fn x => x);

Type clash: match rule of type
)a -> )'b

cannot have equality type ’’c

University of Cambridge, 20 January 1998




