Introduction to Functional Programming: Lecture 2

Introduction to
Functional Programming

Topics covered:

Versions of ML

Running ML on Thor

Interacting with ML

Higher order functions and currying

Evaluation order

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

The ML family

ML is not a single language. Apart from

Standard ML, which we use here, there are many
descendants of the original ML used as the
metalanguage of Edinburgh LCF, e.g.

CAML Light — an excellent lightweight
system developed at INRIA.

Objective CAML — a new version of CAML

Light including object-oriented features.

Lazy ML — a version from Gothenburg using

lazy evaluation.

Standard ML — an agreed ‘standard version’

Standard ML has two parts: the Core language
and the Modules. We will not cover the module

system at all.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Implementations of Standard ML

There are several implementations of (something
similar to) Standard ML:

e Standard ML of New Jersey — free but very

resource-hungry.

e Moscow ML — free but doesn’t have the
Modules.

e Poly ML — good, but a commercial product,

and doesn’t run under Linux

e Harlequin ML — a newer commercial system

with integrated development environment.

We’ll use Moscow ML. This is a good lightweight
implementation based on CAML Light, written
by Sergei Romanenko (Moscow) and Peter Sestoft
(Copenhagen).

The features we use are general, and can easily be

translated to other dialects.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Starting up ML

Moscow ML is already installed on Thor. In order
to start it up, type:

/group/clteach/jrh/mosml/‘arch‘/bin/mosml

This will invoke the appropriate version,

depending on the machine architecture.

The system should start up and present its
prompt.

$ /group/clteach/jrh/mosml/‘arch‘/bin/mosml
Moscow ML version 1.42 (July 1997)
Enter ‘quit();’ to quit.

If you want to install Moscow ML on your own
computer, see the Web page:

http://www.dina.kvl.dk/“sestoft/mosml.html

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Interacting with ML

We will run ML as an interpreter, rather like a
sophisticated calculator. You just type an

expression into it, terminated by a semicolon, and

it prints the result of evaluating it, e.g.

- 10 + b5;
> val it = 15 : int

ML not only prints the result, but also infers the
type of the expression, namely int. If ML cannot
assign a type to an expression then it is rejected:

- 1 + true;

I Type clash:

ML knows the type of the built-in operator +, and
that is how it makes its type inference.

We'll treat the type system more systematically
next time; for the moment, it should be

intuitively clear.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Loading from files

We have just been typing things into ML and

thinking about the results. However one doesn’t

write real programs in this way.

Typically, one writes the expressions and
declarations in a file. To try them out as you go,
these can be inserted in the ML window using cut

and paste.

You can cut and paste using X-windows and
similar systems, or an editor like Emacs with
multiple buffers.

For larger programs, it’s convenient simply to
load them from file into the ML session. This can
be done using the use command in ML, e.g:

use '"myprog.ml";

Programs can also include comments written
between (* and *). These are ignored by ML,
but are useful for people reading the code.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Using functions

Since ML is a functional language, expressions are

allowed to have function type. The ML syntax for

a function taking x to t[x] is fn x => t[x]. For

example we can define the successor function:

- fn x => x + 1;

> val it = fn : int -> int

Again, the type of the expression, this time int
-> int, is inferred and displayed. However the
function itself is not printed; the system merely

writes fn.

Functions are applied by juxtaposition, with or
without bracketing:

(fn x => x + 1) 4;
val it = b : int
(fn x => x + 1)(3);

val it = 4 : int

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Curried functions (1)

Every function in ML takes a single argument.
One way to get the effect of multiple arguments is
to use a pair for the argument — we’ll discuss

this next time.

Another way, often more powerful, is to use

Currying, making the function take its arguments

one at a time, e.g.

- fnx => (fn y => x + y);
> val it = fn : int -> (int -> int)

This function takes the first argument and gives a

new function. For example:

- (fnx => (fny => x + y)) 1;

> val it = fn : int -> int
is just the successor function again, e.g:

- (fn x => (fn y => x + y)) 1) 6;
> val it = 7 : int

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Curried functions (2)

Because curried functions are so common in
functional programming, ML fixes the rules of
association to avoid the need for many
parentheses.

When one writes F; Fy E3, ML associates it as

(Ey E3) E5. For example, all the following are

equivalent:

((fn x => (fn y => x + y)) (1)) (6);
val it = 7 : int

((fn x => (fn y => x + y)) 1) 6;

val it = 7 : int

(fn x => (fn y => x + y)) 1 6;

val it = 7 : int

(fn x => fn y => x + y) 1 6;

val it = 7 : int

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Bindings (1)

It is not necessary to evaluate an expresion all in

one piece. You can bind an expression to a name

using val:

val successor = fn x => x + 1;
val successor = fn : int -> int
successor (successor(successor 0));

val it = 3 : int

Note that this isn’t an assignment statement,
merely an abbreviation. But bindings can be

recursive: just add rec:

val rec fact =
fn n =>1if n = 0 then 1
else n * fact(n - 1);
val fact = fn : int -> int
fact 3;

val it =

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Bindings (2)

When binding functions, one can also use fun.

The following are equivalent:

- val successor = fn x => x + 1;

— fun successor x = x + 1;
and

- val rec fact =
fnn =>if n = 0 then 1

else n * fact(n - 1);

- fun fact n =
if n = 0 then 1

else n * fact(n - 1);

Note that bindings with fun are always recursive.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Higher order functions

Curried functions are an example of a function

that gives another function as a result.

We can also define functions that take other

functions as arguments. This one takes a positive

integer n and a function f and returns f™, i.e.
fo---of (n times):

fun funpow n f x =
if n = 0 then x
else funpow (n - 1) £ (f x);
val funpow = fn : int -> (’a -> ’a) ->
’a -> ’a
funpow 20 (fn x => 2 * x) 1;
val it = 1048576 : int

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Local declarations

Bindings can be made local using

let decs in expr end

For example:

- let fun fact n =
if n = 0 then 1
else n * fact(n - 1)
in fact 6

end;

This binding is now invisible beyond the
terminating end. Similarly one can make a

declaration local to another declaration by:

local decs in decs end

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

ML’s evaluation strategy

Execution of an ML program just means
evaluating an expression. You can think of this
evaluation as happening by a kind of syntactic

unfolding of the program.

e Constants like 1 and + evaluate to themselves.

e Evaluation stops immediately at something of
the form fn x => ... and does not ‘look

inside’ the

e When evaluating a combination s t, then
first both s and t are evaluated to s’ and t°.
If s’ is not of the form fn x => ulx] then
things stop there. Otherwise u[t’], the
result of replacing the dummy variable x by
the evaluated form of t is evaluated.

It is important to grasp this evaluation strategy
in order to understand ML properly.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Which evaluation strategy

But does evaluation order actually matter? One

might guess not. For example:

(1 +2)+ (3+4) =3+ (3 + 4
=3+7=10

and

(1 +2)+ (3+4) =00Q+2)+7
=3+ 7 =10

give the same answer. Does this generalize?

In fact, for ‘pure’ functional programs, if two
different evaluation orders terminate, they give
the same answer. (This is roughly the

Church-Rosser theorem.)

But there are still reasons to care about
evaluation order: termination, efficiency, and

imperative features.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

Lazy evaluation

ML’s evaluation strategy is called eager or
call-by-value because the argument to a function

is evaluated even if it never ends up being used.

An alternative would be, when evaluating (fn x

=> u[x]) t, to evaluate u[t] without yet

evaluating t. This is call-by-name evaluation.

The advantage is: we avoid evaluating t if it isn’t
actually used, and this evaluation might be very

costly or even fail to terminate.

The disadvantage of a naive implementation is
that one would re-evaluate t if it’s used more
than once. So one needs a clever sharing

implementation — lazy evaluation.

Lazy evaluation seems better in principle, and
many functional languages, even ML’s relative
Lazy ML, use it. But it’s harder to implement
efficiently and doesn’t seem to fit with imperative

features. Hence ML'’s choice.

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

ML evaluation examples

(fn x => (fny =y +y) x) (2 + 2)
(fn x => (fny =>y + y) x) 4

(fny =>y +7y) 4

4 + 4

8

(fn f =>fnx=>f x) (fny =>y + y))

(2 + 2)
(fn x => (fny =y + y) x) (2 + 2)
(fn x => (fny =>y + y) x) 4
(fny =>y +y) 4
4 + 4
3

University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2

The conditional

Consider evaluating a factorial (as defined earlier)
where the conditional is evaluated eagerly. To
evaluate fact(0) we unfold it to:

if O = 0 then 1 else 0 *x fact(0 - 1)

We need to cut this down to 1. But under the
standard eager rules, we would first evaluate all
three subexpressions, including fact(0 - 1).
This leads to an infinite loop.

So we can’t regard the conditional as an ordinary
function of three arguments: it has to have its

own ‘lazy’ reduction strategy.

The test expression is evaluated first, and
according to its value, precisely one of the arms,

never both,

University of Cambridge, 16 January 1998

