
Introduction to Functional Programming: Lecture 2 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 2Basics of ML

Topics covered:� Versions of ML� Running ML on Thor� Interacting with ML� Higher order functions and currying� Evaluation order
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 2
The ML family

ML is not a single language. Apart fromStandard ML, which we use here, there are manydescendants of the original ML used as themetalanguage of Edinburgh LCF, e.g.� CAML Light | an excellent lightweightsystem developed at INRIA.� Objective CAML | a new version of CAMLLight including object-oriented features.� Lazy ML | a version from Gothenburg usinglazy evaluation.� Standard ML | an agreed `standard version'Standard ML has two parts: the Core languageand the Modules. We will not cover the modulesystem at all.
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 3
Implementations of Standard MLThere are several implementations of (somethingsimilar to) Standard ML:� Standard ML of New Jersey | free but veryresource-hungry.� Moscow ML | free but doesn't have theModules.� Poly ML | good, but a commercial product,and doesn't run under Linux� Harlequin ML | a newer commercial systemwith integrated development environment.We'll use Moscow ML. This is a good lightweightimplementation based on CAML Light, writtenby Sergei Romanenko (Moscow) and Peter Sestoft(Copenhagen).The features we use are general, and can easily betranslated to other dialects.John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 4
Starting up ML

Moscow ML is already installed on Thor. In orderto start it up, type:/group/clteach/jrh/mosml/`arch`/bin/mosmlThis will invoke the appropriate version,depending on the machine architecture.The system should start up and present itsprompt.$ /group/clteach/jrh/mosml/`arch`/bin/mosmlMoscow ML version 1.42 (July 1997)Enter `quit();' to quit.-If you want to install Moscow ML on your owncomputer, see the Web page:http://www.dina.kvl.dk/~sestoft/mosml.html
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 5
Interacting with ML

We will run ML as an interpreter, rather like asophisticated calculator. You just type anexpression into it, terminated by a semicolon, andit prints the result of evaluating it, e.g.- 10 + 5;> val it = 15 : intML not only prints the result, but also infers thetype of the expression, namely int. If ML cannotassign a type to an expression then it is rejected:- 1 + true;! Type clash:ML knows the type of the built-in operator +, andthat is how it makes its type inference.We'll treat the type system more systematicallynext time; for the moment, it should beintuitively clear.
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 6
Loading from �les

We have just been typing things into ML andthinking about the results. However one doesn'twrite real programs in this way.Typically, one writes the expressions anddeclarations in a �le. To try them out as you go,these can be inserted in the ML window using cutand paste.You can cut and paste using X-windows andsimilar systems, or an editor like Emacs withmultiple bu�ers.For larger programs, it's convenient simply toload them from �le into the ML session. This canbe done using the use command in ML, e.g:use "myprog.ml";Programs can also include comments writtenbetween (* and *). These are ignored by ML,but are useful for people reading the code.John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 7
Using functions

Since ML is a functional language, expressions areallowed to have function type. The ML syntax fora function taking x to t[x] is fn x => t[x]. Forexample we can de�ne the successor function:- fn x => x + 1;> val it = fn : int -> intAgain, the type of the expression, this time int-> int, is inferred and displayed. However thefunction itself is not printed; the system merelywrites fn.Functions are applied by juxtaposition, with orwithout bracketing:- (fn x => x + 1) 4;> val it = 5 : int- (fn x => x + 1)(3);> val it = 4 : int
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 8
Curried functions (1)

Every function in ML takes a single argument.One way to get the e�ect of multiple arguments isto use a pair for the argument | we'll discussthis next time.Another way, often more powerful, is to useCurrying, making the function take its argumentsone at a time, e.g.- fn x => (fn y => x + y);> val it = fn : int -> (int -> int)This function takes the �rst argument and gives anew function. For example:- (fn x => (fn y => x + y)) 1;> val it = fn : int -> intis just the successor function again, e.g:- ((fn x => (fn y => x + y)) 1) 6;> val it = 7 : intJohn Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 9
Curried functions (2)

Because curried functions are so common infunctional programming, ML �xes the rules ofassociation to avoid the need for manyparentheses.When one writes E1 E2 E3, ML associates it as(E1 E2) E3. For example, all the following areequivalent:- ((fn x => (fn y => x + y))(1))(6);> val it = 7 : int- ((fn x => (fn y => x + y)) 1) 6;> val it = 7 : int- (fn x => (fn y => x + y)) 1 6;> val it = 7 : int- (fn x => fn y => x + y) 1 6;> val it = 7 : intJohn Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 10
Bindings (1)

It is not necessary to evaluate an expresion all inone piece. You can bind an expression to a nameusing val:- val successor = fn x => x + 1;> val successor = fn : int -> int- successor(successor(successor 0));> val it = 3 : intNote that this isn't an assignment statement,merely an abbreviation. But bindings can berecursive: just add rec:- val rec fact =fn n => if n = 0 then 1else n * fact(n - 1);> val fact = fn : int -> int- fact 3;> val it = 6 : int
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 11
Bindings (2)

When binding functions, one can also use fun.The following are equivalent:- val successor = fn x => x + 1;- fun successor x = x + 1;and- val rec fact =fn n => if n = 0 then 1else n * fact(n - 1);- fun fact n =if n = 0 then 1else n * fact(n - 1);Note that bindings with fun are always recursive.
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 12
Higher order functions

Curried functions are an example of a functionthat gives another function as a result.We can also de�ne functions that take otherfunctions as arguments. This one takes a positiveinteger n and a function f and returns fn, i.e.f � � � � � f (n times):- fun funpow n f x =if n = 0 then xelse funpow (n - 1) f (f x);> val funpow = fn : int -> ('a -> 'a) ->'a -> 'a- funpow 20 (fn x => 2 * x) 1;> val it = 1048576 : int

John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 13
Local declarations

Bindings can be made local usinglet decs in expr endFor example:- let fun fact n =if n = 0 then 1else n * fact(n - 1)in fact 6end;This binding is now invisible beyond theterminating end. Similarly one can make adeclaration local to another declaration by:local decs in decs end

John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 14
ML's evaluation strategyExecution of an ML program just meansevaluating an expression. You can think of thisevaluation as happening by a kind of syntacticunfolding of the program.� Constants like 1 and + evaluate to themselves.� Evaluation stops immediately at something ofthe form fn x => ... and does not `lookinside' the� When evaluating a combination s t, then�rst both s and t are evaluated to s' and t'.If s' is not of the form fn x => u[x] thenthings stop there. Otherwise u[t'], theresult of replacing the dummy variable x bythe evaluated form of t is evaluated.It is important to grasp this evaluation strategyin order to understand ML properly.John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 15
Which evaluation strategy

But does evaluation order actually matter? Onemight guess not. For example:(1 + 2) + (3 + 4) = 3 + (3 + 4)= 3 + 7 = 10and(1 + 2) + (3 + 4) = (1 + 2) + 7= 3 + 7 = 10give the same answer. Does this generalize?In fact, for `pure' functional programs, if twodi�erent evaluation orders terminate, they givethe same answer. (This is roughly theChurch-Rosser theorem.)But there are still reasons to care aboutevaluation order: termination, e�ciency, andimperative features.
John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 16
Lazy evaluationML's evaluation strategy is called eager orcall-by-value because the argument to a functionis evaluated even if it never ends up being used.An alternative would be, when evaluating (fn x=> u[x]) t, to evaluate u[t] without yetevaluating t. This is call-by-name evaluation.The advantage is: we avoid evaluating t if it isn'tactually used, and this evaluation might be verycostly or even fail to terminate.The disadvantage of a naive implementation isthat one would re-evaluate t if it's used morethan once. So one needs a clever sharingimplementation | lazy evaluation.Lazy evaluation seems better in principle, andmany functional languages, even ML's relativeLazy ML, use it. But it's harder to implemente�ciently and doesn't seem to �t with imperativefeatures. Hence ML's choice.John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 17
ML evaluation examples

(fn x => (fn y => y + y) x) (2 + 2)(fn x => (fn y => y + y) x) 4(fn y => y + y) 44 + 48((fn f => fn x => f x) (fn y => y + y))(2 + 2)(fn x => (fn y => y + y) x) (2 + 2)(fn x => (fn y => y + y) x) 4(fn y => y + y) 44 + 48

John Harrison University of Cambridge, 16 January 1998

Introduction to Functional Programming: Lecture 2 18
The conditional

Consider evaluating a factorial (as de�ned earlier)where the conditional is evaluated eagerly. Toevaluate fact(0) we unfold it to:if 0 = 0 then 1 else 0 * fact(0 - 1)We need to cut this down to 1. But under thestandard eager rules, we would �rst evaluate allthree subexpressions, including fact(0 - 1).This leads to an in�nite loop.So we can't regard the conditional as an ordinaryfunction of three arguments: it has to have itsown `lazy' reduction strategy.The test expression is evaluated �rst, andaccording to its value, precisely one of the arms,never both,
John Harrison University of Cambridge, 16 January 1998

