Introduction to Functional Programming: Lecture 10

Introduction to
Functional Programming

Topics covered:

e The parsing problem
e Recursive descent
Parsers in ML
Higher order parser combinators

Efficiency and limitations.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Grammar for terms

We would like to have a parser for our terms, so

that we don’t have to write them in terms of type

constructors.

term — name(termlist)
name

(term)
numeral
—-term

term + term

term * term
termlist — term ,termlist

| term

Here we have a grammar for terms, defined by a

set of production rules.

John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Ambiguity

The task of parsing, in general, is to reverse this,
i.e. find a sequence of productions that could

generate a given string.

Unfortunately the above grammar is ambiguous,

since certain strings can be produced in several

ways, e.g.

term —
—

— term term

— term term * term

These correspond to different ‘parse trees’.
Effectively, we are free to interpret x + y * 2

either as x + (y * z)or (x + y) * z.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Encoding precedences

We can encode operator precedences by

introducing extra categories, e.g.

atom — name(termlist)
name
numeral

(term)

—atom

atom * mulexp

atom

mulexp + term
| mulexp

termlist — term ,termlist

| term

Now it’s unambiguous. Multiplication has higher

precedence and both infixes associate to the right.

John Harrison

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Recursive descent

A recursive descent parser is a series of mutually

recursive functions, one for each syntactic

category (term, mulexp etc.).

The mutually recursive structure mirrors that in

the grammar.

This makes them quite easy and natural to write
— especially in ML, where recursion is the

principal control mechanism.

For example, the procedure for parsing terms, say
term will, on encountering a - symbol, make a
recursive call to itself to parse the subterm, and
on encountering a name followed by an opening
parenthesis, will make a recursive call to
termlist. This in itself will make at least one

recursive call to term, and so on.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

We assume that a parser accepts a list of input
characters or tokens of arbitrary type.

It returns the result of parsing, which has some

other arbitrary type, and also the list of input

objects not yet processed. Therefore the type of a

parser 1s:

(a)list — (B x («a)list

For example, when given the input characters
(x + y) * z the function atom will process the
characters (x + y) and leave the remaining
characters * z. It might return a parse tree for
the processed expression using our earlier

recursive type, and hence we would have:

atom "(x + y) *x z" =

Fn(ll+ll’ [Var IlXIl’ Var Ilyll])’ll* le

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Parser combinators

In ML, we can define a series of combinators for
plugging parsers together and creating new

parsers from existing ones.

By giving some of them infix status, we can make

the ML parser program look quite similar in

structure to the original grammar.

First we declare an exception to be used where

parsing fails:
exception Noparse;

pl ++ p2 applies p1 first and then applies p2 to
the remaining tokens; many keeps applying the

same parser as long as possible.

p >> f works like p but then applies £ to the

result of the parse.

pl || p2 tries pl first, and if that fails, tries p2.
These are automatically infix, in decreasing order

of precedence.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Definitions of the combinators

fun ++ (parserl,parser2) input =

let val (resultl,restl) = parserl input
val (result2,rest2) = parser2 restl
in ((resultl,result2),rest2)

end;

fun many parser input =
let val (result,next) = parser input
val (results,rest) = many parser next
in ((result::results),rest)

end handle Noparse => ([],input);

fun >> (parser,treatment) input =
let val (result,rest) = parser input

in (treatment(result),rest) end;

fun || (parserl,parser2) input =
parserl input

handle Noparse => parser2 input;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Auxiliary functions

We make some of these infix:

infixr 8 ++; infixr 7 >>; infixr 6 ||;

We will use the following general functions below:

fun itlist £ [J] b =D
| itlist £ (h::t) b =
f h (itlist f t b);
fun K x y = x;
fun fst(x,y)

fun snd(x,y) = y;

val explode = map str o explode;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Atomic parsers

We need a few primitive parsers to get us started.

fun some p [l = raise Noparse
| some p (h::t) =
if p h then (h,t)

else raise Noparse;
fun a tok = some (fn item => item = tok);

fun finished input =
if input = [] then (0,input)

else raise Noparse;

The first two accept something satisfying p, and
something equal to tok, respectively. The last one

makes sure there is no unprocessed input.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Lexical analysis

First we want to do lexical analysis, i.e. split the
input characters into tokens. This can also be
done using our combinators, together with a few
character discrimination functions. First we

declare the type of tokens:

datatype token = Name of string

| Num of string

| Other of string;

We want the lexer to accept a string and produce
a list of tokens, ignoring spaces, e.g.

- lex "sin(x + y) * cos(2 * x + y)";

> val it =
[Name "sin", Other "(", Name "x", Other "+",
Name "y", Other ")", Other "x", Name "cos",
Other "(", Num "2", Other "x", Name "x",

Other "+", Name "y", Other ")"] : token list;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Definition of the lexer

val lex = let

fun several p = many (some p)
fun lowercase_letter s = "a" <= s andalso s <=
fun uppercase_letter s = "A" <= s andalso s <=
fun letter s =

lowercase_letter s orelse uppercase_letter s
fun alpha s = letter s orelse s = "_" orelse s =
fun digit s = "0" <= s andalso s <= "9"
fun alphanum s = alpha s orelse digit s

fun space s = s =" " orelse s = "\n" orelse s = "\t"

fun collect(h,t) =
h~(itlist (fn s1 => fn s2 => s1°s2) t "")
val rawname =
some alpha ++ several alphanum
>> (Name o collect)
val rawnumeral =
some digit ++ several digit
>> (Num o collect)
val rawother = some (K true) >> Other
val token =
(rawname || rawnumeral || rawother) ++
several space >> fst
val tokens = (several space ++ many token) >> snd
val alltokens = (tokens ++ finished) >> fst
in fst o alltokens o explode end;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Parsing terms

In order to parse terms, we start with some basic

parsers for single tokens of a particular kind:

fun name (Name s::rest) = (s,rest)

name _ = raise Noparse;

numeral (Num s::rest) = (s,rest)

numeral _ = raise Noparse;

other (Other s::rest) = (s,rest)

other _ = raise Noparse;

Now we can define a parser for terms, in a form
very similar to the original grammar. The main
difference is that each production rule has

associated with it some sort of special action to

take as a result of parsing.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

The term parser (take 1)

fun atom input

= (name ++
a (Other "(") ++ termlist ++ a (Other ")")
>> (fn (£,(_,(a,_))) => Fn(f,a))
| | name
>> (fn s => Var s)
| | numeral
>> (fn s => Const s)
|| a (Other "(") ++ term ++ a (Other ")")
>> (fst o snd)
|| a (Other "-") ++ atom
>> snd) input
and mulexp input
= (atom ++ a(Other "x*") ++ mulexp
>> (fn (a,(_,m)) => Fn("x", [a,m]))
|| atom) input
and term input
= (mulexp ++ a(Other "+") ++ term
>> (fn (a,(_,m)) => Fn("+",[a,m]))
|| mulexp) input
and termlist input
= (term ++ a (Other ",") ++ termlist
>> (fn (h,(_,t)) => h::t)
|| term
>> (fn h => [h])) input;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Let us package everything up as a single parsing

function:

val parser =
fst o (term ++ finished >> fst) o lex;

To see it in action, we try with and without the

printer (see above) installed:

- parser "sin(x + y) * cos(2 *x x + y)";
> val it =
Fn("x",
[Fn("sin", [Fn("+", [Var "x", Var "y"1)1),
Fn("cos", [Fn("+", [Fn("x",
[Const "2", Var "x"]), Var "y"1)1)1)
: term
installPP print_term;
val it = () : unit
parser "sin(x + y) * cos(2 * x + y)";
val it = ‘sin(x + y) * cos(2 * x + y)¢ : term

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Automating precedence parsing

We can easily let ML construct the ‘fixed-up’

grammar from our dynamic list of infixes:

fun binop opr parser input =
let val (result as (atoml,restl)) = parser input
in if restl <> [] andalso hd restl = Other opr then
let val (atom2,rest2) =
binop opr parser (tl restl)
in (Fn(opr, [atoml, atom2]),rest2) end
else result end;

fun findmin 1 = itlist
(fn (p1 as (_,pr1)) => fn (p2 as (_,pr2)) =>
if prl <= pr2 then pl else p2) (t1 1) (hd 1);

fun delete x (h::t) =
if h = x then t else h::(delete x t);

fun precedence ilist parser input =
if ilist = [] then parser input else
let val opp = findmin ilist
val ilist’ = delete opp ilist

in binop (fst opp) (precedence ilist’ parser) input
end;

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

The term parser (take 2)

Now the main parser is simpler and more general.

fun atom input
= (name ++
a (Other "(") ++ termlist ++ a (Other ")")
>> (fn (f,(_,(a,_))) => Fn(f,a))
| | name
>> (fn s => Var s)
| | numeral
>> (fn s => Const s)
|| a (Other "(") ++ term ++ a (Other ")")
>> (fst o snd)
|| a (Other "-") ++ atom
>> snd) input
and term input = precedence (!infixes) atom input
and termlist input
= (term ++ a (Other ",") ++ termlist
>> (fn (h,(_,t)) => h::t)
|| term
>> (fn h => [h])) input;

This will dynamically construct the precedence
parser using the list of infixes active when it is

actually used. Now the basic grammar is simpler.

John Harrison

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

Backtracking and reprocessing

Some productions for the same syntactic category
have a common prefix. Note that our production

rules for term have this property:

term — mname(termlist)

| name

We carefully put the longer production first in
our actual implementation, otherwise success in
reading a name would cause the abandonment of
attempts to read a parenthesized list of

arguments.

However, this backtracking can lead to our

processing the initial name twice.

This is not very serious here, but it could be in

termlist.

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

An improved treatment

We can easily replace:

fun

and termlist input
= (term ++ a (Other ",") ++ termlist
>> (fn (h,(_,t)) => h::t)
|| term
>> (fn h => [h])) input;

with

let
and termlist input
= (term ++
many (a (Other ",") ++ term >> snd)
>> (fn (h,t) => h::t)) input;

This gives another improvement to the parser,
which is now more efficient and slightly simpler.

The final version is:

University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

The term parser (take 3)

fun atom input

= (name ++
a (Other "(") ++ termlist ++ a (Other ")")
>> (fn (£,(_,(a,_))) => Fn(f,a))
| | name
>> (fn s => Var s)
| | numeral
>> (fn s => Const s)
|| a (Other "(") ++ term ++ a (Other ")")
>> (fst o snd)
|| a (Other "-") ++ atom
>> snd) input
and term input = precedence (!infixes) atom input
and termlist input
= (term ++ many (a (Other ",") ++ term >> snd)
>> (fn (h,t) => h::t)) input;

John Harrison University of Cambridge, 5 February 1998

Introduction to Functional Programming: Lecture 10

(General remarks

With care, this parsing method can be used
effectively. It is a good illustration of the power of
higher order functions.

The code of such a parser is highly structured and

similar to the grammar, therefore easy to modity.

However it is not as efficient as LR parsers;
ML-Yacc is capable of generating good LR

parsers automatically.

Recursive descent also has trouble with left
recursiton. For example, if we had wanted to make
the addition operator left-associative in our

earlier grammar, we could have used:

term — term + mulexp

| mulexp

The naive transcription into ML would loop
indefinitely. However we can often replace such

constructs with explicit repetitions.

University of Cambridge, 5 February 1998

