
Introduction to Functional Programming: Lecture 1 1
Introduction toFunctional ProgrammingJohn HarrisonUniversity of CambridgeLecture 1Introduction and Overview

Topics covered:� Imperative programming� Functional programming� The merits of functional programming� Historical remarks� Overview of the course
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 2
Imperative programming

Imperative (or procedural) programs rely onmodifying a state by using a sequence ofcommands.The state is mainly modi�ed by the assignmentcommand, written v = E or v := E.We can execute one command before another bywriting them in sequence, perhaps separated by asemicolon: C1 ; C2.Commands can be executed conditionally usingif, and repeatedly using while.Programs are a series of instructions on how tomodify the state.Imperative languages, e.g. FORTRAN, Algol, C,Modula-3 support this style of programming.
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 3
An abstract view

We ignore input-output operations, and assumethat a program runs for a limited time, producinga result.We can consider the execution in an abstract wayas:
�0 ! �1 ! �2 ! � � � ! �n

The program is started with the computer in aninitial state �0, including the inputs to theprogram.The program �nishes with the computer in a �nalstate �n, containing the output(s) of the program.The state passes through a �nite sequence ofchanges to get from �0 to �n; in general, eachcommand may modify the state.
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 4
Functional programmingA functional program is simply an expression, andexecuting the program means evaluating theexpression. We can relate this to the imperativeview by writing �n = E[�0].� There is no state, i.e. there are no variables.� Therefore there is no assignment, since there'snothing to assign to.� And there is no sequencing and no repetition,since one expression does not a�ect another.But on the positive side:� We can have recursive functions, givingsomething comparable to repetition.� Functions can be used much more exibly,e.g. we can have higher order functions.Functional languages support this style ofprogramming.John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 5
Example: the factorial

The factorial function can be written imperativelyin C as follows:int fact(int n){ int x = 1;while (n > 0){ x = x * n;n = n - 1;}return x;}whereas it would be expressed in ML as arecursive function:fun fact n =if n = 0 then 1else n * fact(n - 1);
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 6
Why?

At �rst sight a language without variables,assignment and sequencing looks very impractical.We will show in this course how a lot ofinteresting programming can be done in thefunctional style.Imperative programming languages have arisen asan abstraction of the hardware, from machinecode, through assemblers and macro assemblers,to FORTRAN and beyond.Perhaps this is the wrong approach and we shouldapproach the task from the human side. Maybefunctional languages are better suited to people.But what concrete reasons are there for preferringfunctional languages?
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 7
Merits of functional programming

By avoiding variables and assignments, we gainthe following advantages:� Clearer semantics. Programs correspond moredirectly to abstract mathematical objects.� More freedom in implementation, e.g.parallelizability.By the more exible use of functions, we gain:� Conciseness and elegance.� Better parametrization and modularity ofprograms.� Convenient ways of representing in�nite data.
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 8
Denotational semantics

We can identify our ML factorial function with anabstract mathematical (partial) function Z ! Z :
[[fact]](n) = 8<: n! if n � 0? otherwise

where ? denotes unde�nedness, since for negativearguments, the program fails to terminate.Once we have a state, this simple interpretationno longer works. Here is a C `function' thatdoesn't correspond to any mathematical function:int rand(void){ static int n = 0;return n = 2147001325 * n + 715136305;}This gives di�erent results on successive calls!
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 9
Semantics of imperative programs

In order to give a corresponding semantics toimperative programs, we need to make the stateexplicit. For example we can model commands as:� Partial functions �! � (Strachey)� Relations on �� � (Hoare)� Predicate transformers, i.e. total functions(�! bool)! (�! bool) (Dijkstra)If we allow the goto statement, even these are notenough, and we need a semantics based oncontinuations (Wadsworth, Morris).All these methods are quite complicated.With functional programs, we have a real chanceof proving their correctness, or the correctness ofcertain transformations or optimizations.
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 10
Problems with functional programs

Functional programming is not without itsde�ciencies. Some things are harder to �t into apurely functional model, e.g.� Input-output� Interactive or continuously running programs(e.g. editors, process controllers).However, in many ways, in�nite data structurescan be used to accommodate these things.Functional languages also correspond less closelyto current hardware, so they can be less e�cient,and it can be hard to reason about their time andspace usage.ML is not a pure functional language, so you canuse variables and assignments if required.However most of our work is in the purefunctional subset.John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 11
Historical remarks

Some of the ideas behind functional programminggo back a long way, e.g. to `lambda calculus', alogical formalism due to Alonzo Church, inventedin the 1930s before electronic computers.The earliest real functional programminglanguage was LISP, invented by McCarthy in the50s. However this had a number of defects, whichwe will discuss later.The modern trend really begins with ISWIM,invented by Peter Landin in the 1960s.The ML family started with Robin Milner'stheorem prover `Edinburgh LCF' in the late 70s.The language we shall study is essentially (core)Standard ML, but there are other importantdialects, notably CAML and Objective CAML.
John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 12
Overview of the course (1)

� Practicalities of interacting with ML.� Key functional concepts, e.g. evaluationstrategy, higher order functions.� Polymorphic types.� Recursive functions and recursive structures.� Hints for e�ective programming.� Exceptions, references and other imperativefeatures.� Proving programs correct.

John Harrison University of Cambridge, 15 January 1998



Introduction to Functional Programming: Lecture 1 13
Overview of the course (2)

We want to show the power of ML, so we'll �nishwith more substantial examples that illustratesome of the possibilities:� Symbolic di�erentiation� Recursive descent parsing� A Prolog interpreter� A theorem proverThe code for these examples will be madeavailable on Thor.

John Harrison University of Cambridge, 15 January 1998


