
Floating-Point Verification

John Harrison
Intel Corporation

FM Industry Day

Newcastle

20 July 2005

0

Famous floating-point bugs

Bugs in computer systems are, unfortunately, a fact of life. Two fairly
well-known examples involve floating-point arithmetic:

• Incorrect division in early IntelPentium processor.

• Failure of the Ariane rocket due to untrapped floating-point
exception

Intel wrote off $475M to cover the FDIV bug, and suffered
considerable damage to its reputation.

A similar error today could be much more expensive.

1

Complexity of designs

At the same time, market pressures are leading to more and more
complex designs where bugs are more likely.

• A 4-fold increase in bugs in Intel processor designs over last 3
generations.

• Approximately 8000 bugs introduced during design of the
Pentium 4.

Fortunately, pre-silicon detection rates are now very close to 100%.

Just enough to tread water . . .

2

Limits of testing

Bugs are usually detected by extensive testing, including pre-silicon
simulation.

• Slow — especially pre-silicon

• Too many possibilities to test them all

For example:

• 2160 possible pairs of floating point numbers (possible inputs to
an adder).

• Vastly higher number of possible states of a complex
microarchitecture.

So it’s natural that we turn to formal verification methods.

3

Formal verification in industry

Formal verification is increasingly becoming standard practice in the
hardware industry.

• Hardware is designed in a more modular way than most
software.

• There is more scope for complete automation

• The potential consequences of a hardware error are greater

Nevertheless, increasing interest in advanced static checkers like
SLAM incorporating theorem proving.

4

Formal verification methods

Many different methods are used in formal verification, mostly trading
efficiency and automation against generality.

• Propositional tautology checking

• Symbolic simulation

• Symbolic trajectory evaluation

• Temporal logic model checking

• Decidable subsets of first order logic

• First order automated theorem proving

• Interactive theorem proving

5

Theorem provers

There are several theorem provers that have been used for
floating-point verification, some of it in industry:

• ACL2 (used at AMD)

• Coq

• HOL Light (used at Intel)

• PVS

All these are powerful systems with somewhat different strengths
and weaknesses.

6

Intel’s formal verification work

Intel uses formal verification quite extensively, e.g.

• Verification of Intel Pentium 4 floating-point unit with a
mixture of STE and theorem proving

• Verification of bus protocols using pure temporal logic model
checking

• Verification of microcode and software for many Intel Itanium
floating-point operations, using pure theorem proving

FV found many high-quality bugs in P4 and verified “20%” of design

FV is now standard practice in the floating-point domain

7

Our work

We have formally verified correctness of various floating-point
algorithms designed for the Intel Itanium architecture.

• Division and square root (Marstein-style, using fused
multiply-add to do Newton-Raphson or power series
approximation with delicate final rounding).

• Transcendental functions like log and sin (table-driven algorithms
using range reduction and a core polynomial approximations).

Proofs use the HOL Light prover

• http://www.cl.cam.ac.uk/users/jrh/hol-light

8

Our HOL Light proofs

The mathematics we formalize is mostly:

• Elementary number theory and real analysis

• Floating-point numbers, results about rounding etc.

Needs several special-purpose proof procedures, e.g.

• Verifying solution set of some quadratic congruences

• Proving primality of particular numbers

• Proving bounds on rational approximations

• Verifying errors in polynomial approximations

9

Example: tangent algorithm

• The input number X is first reduced to r with approximately
|r| ≤ π/4 such that X = r + Nπ/2 for some integer N . We now
need to calculate ±tan(r) or ±cot(r) depending on N modulo 4.

• If the reduced argument r is still not small enough, it is separated
into its leading few bits B and the trailing part x = r − B, and the
overall result computed from tan(x) and pre-stored functions of
B, e.g.

tan(B + x) = tan(B) +

1
sin(B)cos(B) tan(x)

cot(B) − tan(x)

• Now a power series approximation is used for tan(r), cot(r) or
tan(x) as appropriate.

10

Overview of the verification

To verify this algorithm, we need to prove:

• The range reduction to obtain r is done accurately.

• The mathematical facts used to reconstruct the result from
components are applicable.

• Stored constants such as tan(B) are sufficiently accurate.

• The power series approximation does not introduce too much
error in approximation.

• The rounding errors involved in computing with floating point
arithmetic are within bounds.

Most of these parts are non-trivial. Moreover, some of them require
more pure mathematics than might be expected.

11

Why mathematics?

Controlling the error in range reduction becomes difficult when the
reduced argument X − Nπ/2 is small.

To check that the computation is accurate enough, we need to know:

How close can a floating point number be to an integer
multiple of π/2?

Even deriving the power series (for 0 < |x| < π):

cot(x) = 1/x −
1

3
x −

1

45
x3 −

2

945
x5 − . . .

is much harder than you might expect.

12

The value of formal verification

The formal verifications we undertook had a number of beneficial
consequences

• Uncovered several bugs

• Revealed ways that algorithms could be made more efficient

• Improved our confidence in the (original or final) algorithms

• Led to deeper theoretical understanding

This experience seems quite common.

13

