
HOL Light: A Tutorial Introduction 1
HOL Light:A Tutorial Introduction
John HarrisonUniversity of Cambridge

(�Abo Akademi University)
� History and evolution� Quick rundown of features� Real analysis theory� Programming language semantics� Mizar mode� CORDIC algorithm example

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 2
HOL Light's lineageHOL Light has evolved via:� Edinburgh LCF (Milner et al.)� Cambridge LCF (Paulson)� HOL (Gordon, Melham)� hol90 (Slind)Other LCF-style systems include:� Nuprl (Constable et al.)� Coq (Huet et al.)� Isabelle (Paulson)

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 3
The spectrum of theorem provers

AUTOMATH (de Bruijn)Stanford LCF (Milner)Mizar (Trybulec).PVS (Owre, Rushby, Shankar).NQTHM (Boyer, Moore)Otter (McCune)
John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 4
The LCF approachThe key ideas are:� All theorems created by low-level primitiverules.� Guaranteed by using an abstract type oftheorems; no need to store proofs.� ML available for implementing derived rulesby arbitrary programming.This gives advantages of reliability andextensibility. The system's source code can becompletely open. The user controls the means ofproduction (of theorems). To improve e�ciencyone can:� Encapsulate reasoning in single theorems.� Separate proof search and proof checking.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 5
Some of HOL Light's derived rules
� Simpli�er for (conditional, contextual)rewriting.� Tactic mechanism for mixed forward andbackward proofs.� Tautology checker.� Automated theorem provers for pure logic,based on tableaux and model elimination.� Tools for de�nition of (in�nitary, mutually)inductive relations.� Tools for de�nition of (mutually) recursivedatatypes� Linear arithmetic decision procedures over R ,Z and N .� Di�erentiator for real functions.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 6
Real analysis theory (1)

� De�nitional construction of real numbers� Basic topology� General limit operations� Sequences and series� Limits of real functions� Di�erentiation� Power series and Taylor expansions� Transcendental functions� Gauge integration
John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 7
Real analysis theory (2)There are lots of concrete theorems, e.g.|- abs(abs x - abs y) <= abs (x - y)|- sin(x + y) =sin(x) * cos(y) + cos(x) * sin(y)|- tan(&n * pi) = &0|- &0 < x /\ &0 < y==> (ln(x / y) = ln(x) - ln(y))

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 8
Real analysis theory (3)and many general ones:|- f contl x /\ g contl (f x)==> (\x. g(f x)) contl x|- a <= b /\(f(a) <= y /\ y <= f(b)) /\(!x. a <= x /\ x <= b ==> f contl x)==> (?x. a <= x /\ x <= b /\ (f(x) = y))|- (f diffl l)(g x) /\ (g diffl m)(x)==> ((\x. f(g x)) diffl (l * m))(x)|- a <= b /\(!x. a <= x /\ x <= b==> (f diffl f'(x))(x))==> Dint(a,b) f' (f(b) - f(a))

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 9
Our Programming Language (1)

This includes the following constructs:command = variable := expression| command ; command| if expression then commandelse command| if expression then command| while expression do command| do command while expression| skip| f expressiong| [expression]The language is semantically embedded in HOLusing standard techniques.
John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 10
Our Programming Language (2)We can verify the total correctness of programsaccording to given pre and post-conditions.|- correct p c qcorresponds to the standard total correctnessassertion [p] c [q], i.e. a command c, executed in astate satisfying p, will terminate in a statesatisfying q.We can prove correctness assertions bysystematically breaking down the commandaccording to its structure. In particular, we canannotate it with `veri�cation conditions', and so(automatically) reduce the correctness proof tothe problem of verifying some assertions aboutthe underlying mathematical domains.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 11
Mizar ModeThe standard HOL proof styles (whether forwardor backward) are highly procedural. They requirea certain amount of `programming' from the user.We also provide a more declarative proof style, asused in Mizar. The machine �lls in the gaps inthe proof for us with explicit inference steps. Forexample, here is a proof of8x: 0 � x) ln(1 + x) � x:let x be real;assume &0 <= x;then &0 < &1 + x by arithmetic;so exp(ln(&1 + x)) = &1 + x by EXP_LN;so suffices to show &1 + x <= exp(x)by EXP_MONO_LE;thus thesis by EXP_LE_X

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 12
Floating point correctness (1)We want to specify the correctness according tothe following diagram:

a

v(a)

SIN(a)

sin(v(a))v(SIN(a))

-

-6 6

SIN

sin
v v

What relationship between v(SIN(a)) andsin(v(a)) should we require?

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 13
Floating point correctness (2)There are various plausible options, all of whichare easy to express formally in HOL Light:� The answer is the closest representablenumber to the true answer (with round toeven in case of two equally close answers)� The above is true for all but a smallproportion of possible inputs.� The absolute error is small.� The relative error is small.� The error is commensurate with the likelyerror in the input.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 14
The CORDIC programbeginvar k,x,y,z;x := X;y := 0;k := 1;while k < N do(z := srl(n) k x;if ult(n) z (neg(n) x) then(x := add(n) x z;y := add(m) y (logs k));k := k + 1)endwhere add(n), neg(n), ult(n) and srl(n) k aren-bit addition, 2s complement negation, unsignedcomparison (<) and right shift by k places,respectively.The array logs contains pre-stored constants.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 15
Without the prettyprinterThis shows what the underlying semanticrepresentation looks like:Assign (\k,(x,(y,z)). k,(X,(y,z))) SeqAssign (\k,(x,(y,z)). k,(x,(0,z))) SeqAssign (\k,(x,(y,z)). 1,(x,(y,z))) SeqWhile (\k,(x,(y,z)). k < N)(Assign (\k,(x,(y,z)).k,(x,(y,srl n k x))) SeqIf (\k,(x,(y,z)). ult n z (neg n x))(Assign (\k,(x,(y,z)).k,(add n x z,(y,z))) SeqAssign(\k,(x,(y,z)).k,(x,(add m y (logs k),z)))) SeqAssign (\k,(x,(y,z)). k + 1,(x,(y,z))))However the user need not normally see this form!

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 16
The CORDIC program in Cint k;unsigned long x,y,z;x = X;y = 0;k = 1;while (k < N){ z = x >> k;if (z < -x){ x = x + z;y = y + logs[k];}k = k + 1;}(Using unsigned longs in place of the particularword sizes, for the sake of familiarity.)

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 17
The CORDIC program in Veriloginteger k;reg [n:0] x,z;reg [m:0] y;initial;beginx = X;y = 0;k = 1;while (k < N)beginz = x >> k;if (z < -x)beginx = x + z;y = y + logs[k];endk = k + 1;endendJohn Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 18
Annotations for CORDIC programWe can specify intermediate assertions later inthe proof by exploiting metavariables. However itis simpler to provide annotations. We assert aloop invariant:{mval(n) x < &1 /\ ...}and that N - k decreases with each iteration.The automatic veri�cation condition generator(working by inference) can calculate all the otherintermediate assertions for itself. We are left withfour veri�cation conditions:� The loop invariant is true initially.� The loop invariant is preserved if thecondition in the if statement holds.� The loop invariant is preserved if thecondition in the if statement does not hold.� The loop invariant together with k � Nimplies the �nal postcondition.John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 19
Correctness result (1)The four veri�cation conditions are proved inHOL Light, with the aid of a few lemmas. Thisproves that the annotated program is correctaccording to the speci�cation. HOL Light thenproves automatically that the program with theannotations removed is still correct. Theprecondition of the �nal speci�cation is:inv(&2) <= mval(n) X /\ mval(n) X < &1 /\&N + &2 <= &n /\ &N <= &2 pow (PRE n) /\(!i. &0 < &i /\ &i < &N ==>&2 pow i * &(logs i) <= &2 pow m /\(abs(&(logs i) -&2 pow m * ln(&1 + inv(&2 pow i)))< &1))i.e. the input value X is in the range 12 � X < 1,the stored constants are good enoughapproximations to the true logarithms, and a fewconditions on the parameters hold.

John Harrison University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction 20
Correctness result (2)and the �nal postcondition guaranteed by ourproof is:abs(mval(m) y + ln(mval(n) X))<= &N * (&6 * inv(&2 pow n) +inv(&2 pow m)) +inv(&2 pow N)That is, the di�erence between the calculatedlogarithm mval(m) y and (the negation of) thetrue mathematical result ln(mval(n) X) isbounded by N(6:2�n + 2�m) + 2�N .This can be chosen as small as desired by pickingthe parameters appropriately. Moreover thecorrect values for the stored table of logarithmscan also be calculated in any particular instant,by inference (slowly!)

John Harrison University of Cambridge, 7 November 1996

