HOL Light: A Tutorial Introduction

HOL Light:

A Tutorial Introduction

History and evolution

Quick rundown of features

Real analysis theory
Programming language semantics

Mizar mode

CORDIC algorithm example

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

HOL Light’s lineage

HOL Light has evolved via:

e Edinburgh LCF (Milner et al.)
e Cambridge LCF (Paulson)

e HOL (Gordon, Melham)

e 1ol90 (Slind)

Other LCF-style systems include:

e Nuprl (Constable et al.)
e Coq (Huet et al.)

e Isabelle (Paulson)

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The spectrum of theorem provers

U M (de Bruijn)
(Milner)
(rybulec)

(wre, Rushby, Shankar)

NQ M (Boyer, Moore)
tter (McCune)

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The LCF approach

The key ideas are:

e All theorems created by low-level primitive

rules.

e Guaranteed by using an abstract type of

theorems; no need to store proofs.

e ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and
extensibility. The system’s source code can be
completely open. The user controls the means of
production (of theorems). To improve efficiency

one Cartl:

e Encapsulate reasoning in single theorems.

e Separate proof search and proof checking.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Some of HOL Light’s derived rules

Simplifier for (conditional, contextual)

rewriting.

Tactic mechanism for mixed forward and

backward proofs.
Tautology checker.

Automated theorem provers for pure logic,

based on tableaux and model elimination.

Tools for definition of (infinitary, mutually)

inductive relations.

Tools for definition of (mutually) recursive
datatypes

Linear arithmetic decision procedures over R,
Z, and N.

Differentiator for real functions.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Real analysis theory (1)

Definitional construction of real numbers
Basic topology

General limit operations

Sequences and series

Limits of real functions

Differentiation

Power series and Taylor expansions
Transcendental functions

Gauge integration

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Real analysis theory (2)

There are lots of concrete theorems, e.g.

|- abs(abs x - abs y) <= abs (x - y)

sin(x + y) =

sin(x) * cos(y) + cos(x) * sin(y)
tan(&n * pi) = &0

&0 < x /\ &0 < y
==> (In(x / y) = 1n(x) - 1n(y))

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Real analysis theory (3)

and many general ones:

|- £ contl x /\ g contl (f x)
==> (\x. g(f %)) contl x

a <=b /\

(f(a) <=y /\ y <= £(b)) /\

(1x. a<=x /\ x <= b ==> f contl x)

==> (7x. a<=x /\x<=Db /\ (£{x) =7y))

(f diffl 1) (g x) /\ (g diffl m) (x)
==> ((\x. f(g x)) diffl (1 * m)) (x)

a <=b /\
('x. a<=x /\ x<=0D

==> (f diffl £’ (x)) (%))
==> Dint(a,b) f’ (£f(b) - f(a))

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Our Programming Language (1)

This includes the following constructs:

command = variable := expression
| command ; command
| if expression then command
else command
if expression then command

while expression do command

skip

|
|
| do command while expression
|
| { expression}

|

[expression]

The language is semantically embedded in HOL
using standard techniques.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Our Programming Language (2)

We can verify the total correctness of programs

according to given pre and post-conditions.
|- correct p c q

corresponds to the standard total correctness

assertion [p| ¢ [q], i.e. a command ¢, executed in a

state satisfying p, will terminate in a state

satistying gq.

We can prove correctness assertions by
systematically breaking down the command
according to its structure. In particular, we can
annotate it with ‘verification conditions’, and so
(automatically) reduce the correctness proof to
the problem of verifying some assertions about

the underlying mathematical domains.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The standard HOL proof styles (whether forward
or backward) are highly procedural. They require

a certain amount of ‘programming’ from the user.

We also provide a more declarative proof style, as
used in Mizar. The machine fills in the gaps in

the proof for us with explicit inference steps. For

example, here is a proof of
Ve.0 <z =In(l+z) <z

let x be real;

assume &0 <= x;

then &0 < &1 + x by arithmetic;

so exp(ln(&l + x)) = &1 + x by EXP_LN;

so suffices to show &1 + x <= exp(x)
by EXP_MONO_LE;

thus thesis by EXP_LE_X

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Floating point correctness (1)

We want to specify the correctness according to

the following diagram:

v(a) ' _ sin(v(a))
v(SIN(a))

= SIN((I)
SIN

What relationship between v(SIN(a)) and

sin(v(a)) should we require?

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Floating point correctness (2)

There are various plausible options, all of which

are easy to express formally in HOL Light:

The answer is the closest representable

number to the true answer (with round to

even in case of two equally close answers)

The above is true for all but a small

proportion of possible inputs.
The absolute error is small.
The relative error is small.

The error is commensurate with the likely

error in the input.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The CORDIC program

begin
var k,x,y,z;

while k < N do
(z := srl(n) k x;
if ult(n) z (neg(n) x) then

:= add(n) x z;
:= add(m) y (logs k));
1

where add(n), neg(n), ult(n) and srl(n) k are
n-bit addition, 2s complement negation, unsigned
comparison (<) and right shift by & places,

respectively.

The array logs contains pre-stored constants.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Without the prettyprinter

This shows what the underlying semantic
representation looks like:

Assign (\k, (x,(y,z)). k,(X,(y,z))) Seq
Assign (\k, (x,(y,z)). k,(x,(0,z))) Seq
Assign (\k, (x,(y,z)). 1,(x,(y,z))) Seq
While (\k, (x,(y,z)). k < N)
(Assign (\k, (x,(y,2)).

k,(x,(y,srl n k x))) Seq

If (\k,(x,(y,z)). ult n z (neg n x))
(Assign (\k, (x,(y,2)).
k,(add n x z,(y,z))) Seq
Assign
(\k, (x, (y,2)).
k,(x,(add m y (logs k),z)))) Seq
Assign (\k,(x,(y,z)). k + 1,(x,(y,z))))

However the user need not normally see this form!

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The CORDIC program in C

int k;

unsigned long x,y,Z;

while (k < N)

{ z=x > k;

if (z < -x)
{x=x+ z;

=y + logsl[k];

(Using unsigned longs in place of the particular

word sizes, for the sake of familiarity.)

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

The CORDIC program in Verilog

integer k;

reg [n:0] x,z;

reg [m:0] y;
initial;
begin
x =
y =
k =
while (k < N)
begin
Z = x > k;
if (z < -x)
begin
=X + z;

=y + logsl[k];

+ 1;

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Annotations for CORDIC program

We can specify intermediate assertions later in

the proof by exploiting metavariables. However it

is simpler to provide annotations. We assert a

loop invariant:
{mval(n) x < &1 /\ ...}
and that N - k decreases with each iteration.

The automatic verification condition generator
(working by inference) can calculate all the other
intermediate assertions for itself. We are left with

four verification conditions:

The loop invariant is true initially.

The loop invariant is preserved if the
condition in the if statement holds.

The loop invariant is preserved if the

condition in the if statement does not hold.

The loop invariant together with &k > N
implies the final postcondition.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Correctness result (1)

The four verification conditions are proved in
HOL Light, with the aid of a few lemmas. This
proves that the annotated program is correct

according to the specification. HOL Light then

proves automatically that the program with the
annotations removed is still correct. The

precondition of the final specification is:

inv(&2) <= mval(n) X /\ mval(n) X < &1 /\
&N + &2 <= &n /\ &N <= &2 pow (PRE n) /\
(1i. &0 < &i /\ &i < &N ==
&2 pow i * &(logs i) <= &2 pow m /\
(abs(&(logs i) -
&2 pow m * 1n(&1 + inv(&2 pow i)))
< &1))

i.e. the input value X is in the range % < X <1,
the stored constants are good enough
approximations to the true logarithms, and a few

conditions on the parameters hold.

University of Cambridge, 7 November 1996

HOL Light: A Tutorial Introduction

Correctness result (2)

and the final postcondition guaranteed by our

proof is:

abs(mval(m) y + 1In(mval(n) X))
<= &N * (&6 * inv(&2 pow n) +
inv (&2 pow m)) +

inv(&2 pow N)

That is, the difference between the calculated
logarithm mval(m) y and (the negation of) the

true mathematical result In(mval(n) X) is
bounded by N(6.27" +27™) 42—V,

This can be chosen as small as desired by picking
the parameters appropriately. Moreover the
correct values for the stored table of logarithms
can also be calculated in any particular instant,

by inference (slowly!)

University of Cambridge, 7 November 1996

