HOL Light and its use in verification

HOL Light

and 1ts use 1n verification

History and evolution

Primitive basis

Derived rules and mathematical theories
Mizar mode

Floating point verification

University of Cambridge, 6 March 1998




HOL Light and its use in verification

HOL Light’s lineage

HOL Light is a programmable interactive
theorem prover based on classical higher order

logic (polymorphic simple type theory). It has

evolved via:

e Edinburgh LCF (Milner et al.)
e Cambridge LCF (Paulson)
e HOL (Gordon, Melham)

e hol90 (Slind)
Other LCF-style systems include:

e Nuprl (Constable et al.)
e Coq (Huet et al.)

e Isabelle (Paulson)

University of Cambridge, 6 March 1998




HOL Light and its use in verification

The spectrum of theorem provers

AUTOMATH (de Bruijn)
(Milner)
(Trybulec)

(Owre, Rushby, Shankar)

NQTHM (Boyer, Moore)
Otter (McCune)

University of Cambridge, 6 March 1998




HOL Light and its use in verification

The LCF approach

The key ideas are:

e All theorems created by low-level primitive

rules.

e Guaranteed by using an abstract type of

theorems; no need to store proofs.

e ML available for implementing derived rules

by arbitrary programming.

This gives advantages of reliability and
extensibility. The system’s source code can be
completely open. The user controls the means of
production (of theorems). To improve efficiency

one cCarmn.

e Encapsulate reasoning in single theorems.

e Separate proof search and prootf checking.

University of Cambridge, 6 March 1998




Primitive rules (1)

—— REFL

I'Fs=t ArFt=u
FT'UAFs=u

TRANS

(Up to alpha-equivalence.)

I'Fs=t AFu=vw
F'UAF s(u) = t(v)

MK_COMB

(Provided types agree, e.g. s:0 — 7and u: 0.)

['Fs5=1t
I'F(Ax.s) = (A\x. t)

ABS

(Provided z is not free in the assumptions I'.)

F(Ax.t)x =t BEIA

University of Cambridge, 6 March 1998




Primitive rules (2)

ASSUME

{p}Fp

I'Fp=q AFp
['UAFq

EQ_MP

I'Fp Albg
T —={gh)U(A—{p}H) Fp=q

DED_ANTISYM_RULE

Clzy,...,xn) Fpley, ..., 2.
F[tl,...,tn] Fp[tl,...,tn]

INST

Clag, ..., an] Fplag, ..., o]
Tyl Eolye - ]

INST_TYPE

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Principles of definition

All theories in HOL Light are derived from three
axioms using only primitive rules plus extension

by definitions of new constants and new types.

For example, the other logical constants are

defined as follows:

(Az. ) = (A\z. x)
Ap-Aq-(Af- fpa)=(Af fTT)

Ap-AG.pANqg=p

AP.P=Xx. T
AP.VQ. (V. P(z) = Q) = Q

Ap. Aq.Vr.(p=>1r)=>(g=71)=>7r
VP. P

At.t= 1

AP. 3P AVz.Yy. P2z APy = (x =1y)

University of Cambridge, 6 March 1998




HOL Light and its use in verification a

Mathematical axioms

HOL Light’s mathematics is based on one new

operator € and one new type ind.

e The axiom of extensionality: Vt. (Az. t z) = t.

e The axiom of choice via the Hilbert operator:
VP, x. P x = P(cP).

e The axiom of infinity for the type ind:
37 : ind — ind. ONELONE f A —(ONTO f).

That’s all! After that, HOL Light tries to
conform to the LCF ideal by deriving everything

via definitional expansion.

There are quite a lot of derived rules that the user
can invoke without bothering about their internal
workings. But internally they decompose to

primitive inferences.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

The main derived rules

Simplifier for (conditional, contextual)

rewriting.

Tactic mechanism for mixed forward and

backward proofs.
Tautology checker.

Automated theorem provers for pure logic,

based on tableaux and model elimination.

Tools for definition of (infinitary, mutually)

inductive relations.

Tools for definition of (mutually) recursive
datatypes

Linear arithmetic decision procedures over IR,
Z and N.

Differentiator for real functions.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Mathematical theories

Basic set theory, e.g. definition by recursion
over finite sets.

Forms of the Axiom of Choice, e.g. Zorn’s

Lemma and wellordering principle.

Basic theory of lists, e.g. lengths, mappings,
list iteration

Integers and real numbers (constructed)

Elementary real analysis, e.g.

Basic topology and general limits
Sequences and series

Limits of real functions
Differentiation

Power series and Taylor expansions
Transcendental functions

Gauge integration

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Some applications

Apart from floating point verification and real

analysis, we’ve played around with:

e Formalization of simple embedded

programming languages, e.g. Dijkstra’s

guarded command language.

Parsing and prettyprinting support
Operational semantics
Weakest preconditions
Verification condition generation
e Formalization of theorems from logic, e.g.
— Completeness of a proof system for
propositional logic

— Compactness, Uniformity and
Lowenheim-Skolem for first order logic

— Tarski’s theorem on the undefinability of

truth in first order number theory

University of Cambridge, 6 March 1998




HOL Light and its use in verification

The standard HOL proof styles (whether forward
or backward) are highly procedural. They require

a certain amount of ‘programming’ from the user.

We also provide a more declarative proof style, as
used in Mizar. The machine fills in the gaps in
the proof for us with explicit inference steps.
Here’s a proof of Vo.0 < z = In(1 + z) < x:

let x be real;

assume &0 <= x;

then &0 < &1 + x by arithmetic;

so exp(ln(&l + x)) = &1 + x by EXP_LN;

so suffices to show &1 + x <= exp(x)
by EXP_MONO_LE;

thus thesis by EXP_LE_X

So far we haven’t used this much, but in the
future we hope to refine it in order to make some
pure mathematics proofs at least more readable.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Floating point verification

Floating point algorithms are fairly small, but

often complicated mathematically.

There have been errors in commercial
systems, e.g. the Pentium FDIV bug in 1994.

In the case of transcendental functions it’s
difficult even to say what correctness means.

Verification using model checkers is difficult
because of the need for mathematical
apparatus.

It can even be difficult using theorem provers
since not many of them have good theories of

real numbers etc.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Floating point correctness

We want to specity the correctness according to

the following diagram:

v(a) N 651329@(@)2

" v(EXP(a))

~ EXP(a)

EXP

We measure the difference between v(EX P(a))
and exp(v(a)) in ‘units in the last place’ of
EXP(a).

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Our implementation language

This includes the following constructs:

command = variable := expression

command ; command

if expression then command
else command

if expression then command
while expression do command
do command while expression
skip

{ expression}

We have a simple relational semantics in HOL,

and derive weakest preconditions and total

correctness rules. We then prove total correctness

via VC generation.

The idea is that this language can be formally
linked to C, Verilog, Handel, ...

John Harrison

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Sketch of the algorithm

The algorithm we verify is taken from a paper by

Tang in ACM Transactions on Mathematical
Software, 1989.

Similar techniques are widely used for floating
point libraries, and, probably, for hardware

implementations.

The algorithm relies on a table of precomputed
constants. Tang’s paper gives actual values as hex
representations of IEEE numbers.

We can split the operations into three steps:
e Perform range reduction
e Use polynomial approximation

e Reconstruct answer using tables

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Code for the algorithm

if Isnan(X) then E := X
else if X == Plus_infinity then E := Plus_infinity

else if X == Minus_infinity then E := Plus_zero
else if abs(X) > THRESHOLD_1 then
if X > Plus_zero then E := Plus_infinity
else E := Plus_zero
else if abs(X) < THRESHOLD_2 then E := Plus_one + X
else
(N := INTRND(X * Inv_L);
N2 := N % Int_32;
N1 := N - N2;
if abs(N) >= Int_2e9 then
R1 := (X - Tofloat(N1) * L1) - Tofloat(N2) * L1
else
:= X - Tofloat(N) * Li1;
:= Tofloat(--N) * L2;
N1 / Int_32;
N2;
R1 + R2;
R xR *x (A1 + R x A2);
:= R1 + (R2 + Q);
:= S_Lead(J) + S_Trail(J);
:= S_Lead(J) + (S_Trail(J) + S * P);
Scalb(E1,M)

University of Cambridge, 6 March 1998




Organization of HOL proof

Real numbers

/ \
/ \
/ \

Programming / \
language IEEE spec Real analysis

I /| I

I

I

Squarefree decomp &

Sturm’s theorem

Algorithm
\
\

I
I
I
I
I
I
I
I
I
\ I

\ FP lemmas
|

I

I

I

I
Verification

University of Cambridge, 6 March 1998




Floating point lemmas (1)

A large part of the proof (though not the most

difficult part!) involves analyzing the way

rounding errors build up, and how in special

situations, the error can be zero.

We define the error error (x) resulting from

rounding a real number to a floating point value.

Because of the regular way in which the
operations are defined, all the operations then
relate to their abstract mathematical

counterparts according to the same pattern:
|- Finite(a) A Finite(b) A
abs(Val(a) + Val(b)) < threshold(float_format)
= Finite(a + b) A
(Val(a + b) = (Val(a) + Val(b)) +
error(Val(a) + Val(b)))

The comparisons are even more straightforward:

|- Finite(a) A Finite(b)
= (a < b =Val(a) < Val(b))

University of Cambridge, 6 March 1998




Floating point lemmas (2)

We have several lemmas quantitying the error, of

which the most useful is the following:

|- abs(x) < threshold(float_format) A
abs(x) < (&2 pow j / &2 pow 125)
= abs(error(x)) <= &2 pow j / &2 pow 150

There are many important situations, however,
where the operations are exact, because the result
is exactly representable. Trivially, for example,
the negation and absolute value functions are
always exact:

|- Finite(a)
= Finite(abs(a)) A (Val(abs(a)) = abs(Val(a)))

Also, if a result only has 24 significant digits
(modulo some care in the denormal case), then it
is exactly representable:

|- (abs(x) = (&2 pow e / &2 pow 149) * &k) A
k < 2 EXP 24 N e < 254
= da. Finite(a) A (Val(a) = x)

University of Cambridge, 6 March 1998




Floating point lemmas (3)

Any calculation whose result is exactly

representable has an error of zero:

|- Finite(a) A Finite(b) A
Finite(c) A (Val(c) = Val(a) * Val(b))
= Finite(a * b) A
(Val(a * b) = Val(a) * Val(b))

Another important case of exact operations is
subtraction of nearby values with the same sign:
|- Finite(a) A Finite(b) A
&2 * abs(Val(a) - Val(b)) <= abs(Val(a))

= Finite(a - b) A
(Val(a - b) = Val(a) - Val(b))

This is a classic result in floating point error

analysis.

We also have a type of machine integers, and
prove various obvious results about how the
arithmetic operations on those work.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Error in polynomial approximation

This part is tricky. In brief, these are the steps:

Prove that the error in a high-order Taylor
series 1s much better than we need.

Consider the difference between this and the

minimax polynomial actually used.

Locate the zeros of (the squarefree

decomposition of) its derivative.

Prove using Sturm’s theorem that these are
all the zeros.

Hence get a bound on the error by evaluation
at the endpoints of the interval and the
points of zero derivative, using some

elementary real analysis.

Tang makes a small slip over the necessary

interval.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

The final result

Under the various ‘definitional’ assumptions, we

confirm Tang’s bottom-line result:

(Isnan(X) = Isnan(E)) A
(X == Plus_infinity V
Finite(X) A
exp(Val X) >= threshold(float_format)
= E == Plus_infinity) A
(X == Minus_infinity = E == Plus_zero) A
(Finite(X) A exp(Val X) < threshold(float_format)
= Isnormal(E) A
abs(Val(E) - exp(Val X))
< (%54 / &100) * Ulp(E) V
(Isdenormal(E) V Iszero(E)) A
abs(Val(E) - exp(Val X))
< (&77 / &100) * Ulp(E))

This is somewhat more explicit than Tang’s

statement regarding overflow.

University of Cambridge, 6 March 1998




HOL Light and its use in verification

Conclusions

e HOL Light successfully implements the LCF
approach to theorem proving. Its primitives
are very simple, but its derived rules are

enough for some non-toy proofs.

Particular proofs or verifications tend to

point up the weak and strong points of

systems. For example

— Programmability and the automation of
linear arithmetic are invaluable, as is the

presence of a decent real analysis theory.

— Better tools are needed for nonlinear
reasoning. Explicit calculations are still

very slow.

In the floating point proof, we confirm (and
strengthen) the main results of the hand
proof. But we detect a few slips and uncover
subtle issues. This class of proofs is a good
target for verification.

University of Cambridge, 6 March 1998




